Difference between revisions of "2021 Fall AMC 10B Problems"
Arcticturn (talk | contribs) (→Problem 3) |
Arcticturn (talk | contribs) (→Problem 1) |
||
Line 5: | Line 5: | ||
<math>(\textbf{A})\: 10{,}000\qquad(\textbf{B}) \: 10{,}010\qquad(\textbf{C}) \: 10{,}110\qquad(\textbf{D}) \: 11{,}000\qquad(\textbf{E}) \: 11{,}110</math> | <math>(\textbf{A})\: 10{,}000\qquad(\textbf{B}) \: 10{,}010\qquad(\textbf{C}) \: 10{,}110\qquad(\textbf{D}) \: 11{,}000\qquad(\textbf{E}) \: 11{,}110</math> | ||
+ | |||
+ | [[Solution]] | ||
==Problem 2== | ==Problem 2== |
Revision as of 18:51, 22 November 2021
2021 Fall AMC 10B (Answer Key) Printable versions: • Fall AoPS Resources • Fall PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
Problem 1
What is the value of
Problem 2
Problem 3
The expression is equal to the fraction in which and are positive integers whose greatest common divisor is . What is
Problem 4
At noon on a certain day, Minneapolis is degrees warmer than St. Louis. At the temperature in Minneapolis has fallen by degrees while the temperature in St. Louis has risen by degrees, at which time the temperatures in the two cities differ by degrees. What is the product of all possible values of
Problem 5
Let . Which of the following is equal to
Problem 6
The least positive integer with exactly distinct positive divisors can be written in the form , where and are integers and is not a divisor of . What is
Problem 7
The least positive integer with exactly distinct positive divisors can be written in the form , where and are integers and is not a divisor of . What is
See also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by 2021 Fall AMC 10A |
Followed by 2022 AMC 10A | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.