Difference between revisions of "2021 Fall AMC 10A Problems"
Line 164: | Line 164: | ||
==Problem 21== | ==Problem 21== | ||
+ | Each of the <math>20</math> balls is tossed independently and at random into one of the <math>5</math> bins. Let <math>p</math> be the probability that some bin ends up with <math>3</math> balls, another with <math>5</math> balls, and the other three with <math>4</math> balls each. Let <math>q</math> be the probability that every bin ends up with <math>4</math> balls. What is <math>\frac{p}{q}</math>? | ||
+ | |||
+ | <math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ | ||
+ | 12 \qquad\textbf{(E)}\ 16</math> | ||
− | |||
[[2021 Fall AMC 10A Problems/Problem 21|Solution]] | [[2021 Fall AMC 10A Problems/Problem 21|Solution]] |
Revision as of 18:27, 22 November 2021
2021 Fall AMC 10A (Answer Key) Printable versions: • Fall AoPS Resources • Fall PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
What is the value of ?
Problem 2
Menkara has a index card. If she shortens the length of one side of this card by inch, the card would have area square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by inch?
Problem 3
What is the maximum number of balls of clay of radius that can completely fit inside a cube of side length assuming the balls can be reshaped but not compressed before they are packed in the cube?
Problem 4
Mr. Lopez has a choice of two routes to get to work. Route A is miles long, and his average speed along this route is miles per hour. Route B is miles long, and his average speed along this route is miles per hour, except for a -mile stretch in a school zone where his average speed is miles per hour. By how many minutes is Route B quicker than Route A?
Problem 5
The six-digit number is prime for only one digit What is
Problem 6
Elmer the emu takes equal strides to walk between consecutive telephone poles on a rural road. Oscar the ostrich can cover the same distance in equal leaps. The telephone poles are evenly spaced, and the st pole along this road is exactly one mile ( feet) from the first pole. How much longer, in feet, is Oscar's leap than Elmer's stride?
Problem 7
As shown in the figure below, point lies on the opposite half-plane determined by line from point so that . Point lies on so that , and is a square. What is the degree measure of ?
[asy] usepackage("mathptmx"); size(6cm); pair A = (0,10); label("", A, N); pair B = (0,0); label("", B, S); pair C = (10,0); label("", C, S); pair D = (10,10); label("", D, SW); pair EE = (15,11.8); label("", EE, N); pair F = (3,10); label("", F, N); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F); draw(A--B--C--D--cycle); draw(D--EE--F--cycle); label("", (15,9), SW); [/asy]
Problem 8
A two-digit positive integer is said to be cuddly if it is equal to the sum of its nonzero tens digit and the square of its units digit. How many two-digit positive integers are cuddly?
Problem 9
When a certain unfair die is rolled, an even number is times as likely to appear as an odd number. The die is rolled twice. What is the probability that the sum of the numbers rolled is even?
Problem 10
A school has students and teachers. In the first period, each student is taking one class, and each teacher is teaching one class. The enrollments in the classes are and . Let be the average value obtained if a teacher is picked at random and the number of students in their class is noted. Let be the average value obtained if a student was picked at random and the number of students in their class, including the student, is noted. What is ?
Problem 11
Emily sees a ship traveling at a constant speed along a straight section of a river. She walks parallel to the riverbank at a uniform rate faster tha the ship. She counts equal steps walking from the back of the ship to the front. Walking in the opposite direction, she counts steps of the same size from the front of the ship to the back. In terms of Emily's equal steps, what is the length of the ship?
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Each of the balls is tossed independently and at random into one of the bins. Let be the probability that some bin ends up with balls, another with balls, and the other three with balls each. Let be the probability that every bin ends up with balls. What is ?
Problem 22
Problem 23
Problem 24
Problem 25
A quadratic polynomial with real coefficients and leading coefficient is called if the equation is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial for which the sum of the roots is maximized. What is ?
See also
2021 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by 2020 AMC 10B |
Followed by 2021 AMC 10B | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.