Difference between revisions of "User:Temperal/Introductory Proportion"
(→Problem) |
|||
Line 5: | Line 5: | ||
x=ky | x=ky | ||
\end{cases} </cmath> | \end{cases} </cmath> | ||
− | Find the possible values of '''k | + | Find the possible values of '''k'''. |
==Solution== | ==Solution== | ||
− | + | If <math>x=\frac{1}{20}</math>, then <br /> | |
− | If <math>x=\frac{1} {20}</math>, then <math> \frac{y} {20} = \frac{1} {k}</math> | + | :<math>\frac{1}{20}=ky</math> and |
− | + | :<math>\frac{y}{20}=\frac{1}{k}</math><br /> | |
+ | Solving gets us:<br /> | ||
+ | :<math>y=\frac{20}{k}</math> | ||
+ | :<math>\frac{1}{20}=k\frac{20}{k}</math> | ||
+ | :<math>\frac{1}{20}=20</math><br /> | ||
+ | Thus, there is no solution when <math>x=\frac{1}{20}</math><br /> | ||
+ | If <math>y=\frac{1}{20}</math>, then <br /> | ||
+ | :<math>\frac{x}{20}=\frac{1}{k}</math> | ||
+ | :<math>x=\frac{k}{20}</math> | ||
+ | :<math>xk=20</math> | ||
+ | :<math>\frac{k}{20}\cdot k=20</math> | ||
+ | :<math>k^2=400</math> | ||
+ | :<math>k=\pm 20</math><br /> | ||
+ | Thus, the possible values of '''k''' are <math>(20,-20)</math>. |
Revision as of 12:45, 22 September 2007
Problem
Suppose is either x or y in the following system: Find the possible values of k.
Solution
If , then
- and
Solving gets us:
Thus, there is no solution when
If , then
Thus, the possible values of k are .