Difference between revisions of "User:Temperal/Introductory Proportion"
Line 5: | Line 5: | ||
x=ky | x=ky | ||
\end{cases} </cmath> | \end{cases} </cmath> | ||
− | Find the possible values of '''k'''. | + | Find the possible values of '''k''' in terms of x and y. |
==Solution== | ==Solution== | ||
{{incomplete|solution}} | {{incomplete|solution}} | ||
− | If <math>x=\frac{1} {20}</math>, then <math> \frac{y} {20} = \frac{1} {k}</math> so <math>ky=20</math> or <math>ky=\frac{1} {20}</math>. now we get <math>k=\frac{20} {y}</math> and <math>\frac{1} {20y}</math> | + | If <math>x=\frac{1} {20}</math>, then <math> \frac{y} {20} = \frac{1} {k}</math> so <math>ky=20</math> or <math>ky=\frac{1} {20}</math>. now we get <math>k=\frac{20} {y}</math> and <math>\frac{1} {20y}</math>. If <math>y=\frac{1} {20}</math>, |
+ | then we solve again, we get <math>k=20x</math> and <math>\frac{20} {x}</math> |
Revision as of 12:30, 22 September 2007
Problem
Suppose is either x or y in the following system: Find the possible values of k in terms of x and y.
Solution
Template:Incomplete If , then so or . now we get and . If , then we solve again, we get and