Difference between revisions of "Vieta's Formulas"

(Redirected page to Vieta's formulas)
(Tag: New redirect)
 
Line 1: Line 1:
In [[algebra]], '''Vieta's formulas''' are a set of formulas that relate the coefficients of a [[polynomial]] to its roots.
+
#REDIRECT[[Vieta's formulas]]
 
 
(WIP)
 
 
 
== Statement ==
 
Let <math>P(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1 x + a_0</math> be any polynomial with [[Complex number | complex]] coefficients with roots <math>r_1, r_2, \ldots , r_n</math>, and let <math>s_n</math> be the [[elementary symmetric polynomial]] of the roots with degree <math>n</math>. Vietas formulas then state that <cmath>s_1 = r_1 + r_2 + \cdots + r_n = - \frac{a_{n-1}}{a_n}</cmath> <cmath>s_2 = r_1r_2 + r_1r_3 + \cdots + r_{n-1}r_n = \frac{a_{n-2}}{a_n}</cmath> <cmath>\vdots</cmath> <cmath>s_n = r_1r_2r_3 \cdots r_n = (-1)^n \frac{a_0}{a_n}.</cmath> This can be compactly written as if <math>j</math> is any integer such that <math>0<j<n</math>, then <math>s_j = (-1)^j \frac{a_{n-j}}{a_n}</math>.
 
== Proof ==
 
By the [[factor theorem]], <math>P(x) = a_n (x-r_1)(x-r_2) \cdots (x-r_n)</math>; we will then prove these formulas by expanding this polynomial. Let <math>j</math> be any integer such that <math>0<j<n</math>. We wish to find a process that generates every term with degree <math>j</math>. If
 
 
 
 
 
<center><math>a_n = a_n</math></center>
 
<center><math> a_{n-1} = -a_n(r_1+r_2+\cdots+r_n)</math></center>
 
<center><math> a_{n-2} = a_n(r_1r_2+r_1r_3+\cdots+r_{n-1}r_n)</math></center>
 
<center><math>\vdots</math></center>
 
<center><math>a_0 = (-1)^n a_n r_1r_2\cdots r_n</math></center>
 
 
 
More commonly, these are written with the roots on one side and the <math>a_i</math> on the other (this can be arrived at by dividing both sides of all the equations by <math>a_n</math>).
 
 
 
If we denote <math>\sigma_k</math> as the <math>k</math>-th elementary symmetric sum, then we can write those formulas more compactly as <math>\sigma_k = (-1)^k\cdot \frac{a_{n-k}}{a_n{}}</math>, for <math>1\le k\le {n}</math>.
 
Also, <math>-b/a = p + q, c/a = p \cdot q</math>.
 
 
 
Provide links to problems that use vieta formulas:
 
Examples:
 
https://artofproblemsolving.com/wiki/index.php/2017_AMC_12A_Problems/Problem_23
 
https://artofproblemsolving.com/wiki/index.php/2010_AMC_10A_Problems/Problem_21
 
 
 
==Proving Vieta's Formula==
 
Basic proof:
 
This has already been proved earlier, but I will explain it more.
 
If we have
 
<math>x^2+ax+b=(x-p)(x-q)</math>, the roots are <math>p</math> and <math>q</math>.
 
Now expanding the left side, we get: <math>x^2+ax+b=x^2-qx-px+pq</math>.
 
Factor out an <math>x</math> on the right hand side and we get: <math>x^2+ax+b=x^2-x(p+q)+pq</math>
 
Looking at the two sides, we can quickly see that the coefficient <math>a</math> is equal to <math>-(p+q)</math>. <math>p+q</math> is the actual sum of roots, however. Therefore, it makes sense that <math>p+q= \frac{-b}{a}</math>. The same proof can be given for <math>pq=\frac{c}{a}</math>.
 
 
 
Note: If you do not understand why we must divide by <math>a</math>, try rewriting the original equation as <math>ax^2+bx+c=(x-p)(x-q)</math>
 
 
 
[[Category:Algebra]]
 
[[Category:Polynomials]]
 
[[Category:Theorems]]
 

Latest revision as of 13:40, 5 November 2021

Redirect to: