Difference between revisions of "2016 AMC 10A Problems/Problem 20"
Isabelchen (talk | contribs) (→Solution 4 (Casework)) |
Isabelchen (talk | contribs) (→Solution 4 (Casework)) |
||
Line 19: | Line 19: | ||
==Solution 4 (Casework)== | ==Solution 4 (Casework)== | ||
− | The terms are in the form <math>a^xb^yc^zd^w1^t</math>, where <math>x + y + z + w + t = N</math>. The problem becomes distributing <math>N</math> identical balls to <math>5</math> different boxes <math>(x, y, z, w, t)</math> such that boxes <math>(x, y, z, w)</math> | + | The terms are in the form <math>a^xb^yc^zd^w1^t</math>, where <math>x + y + z + w + t = N</math>. The problem becomes distributing <math>N</math> identical balls to <math>5</math> different boxes <math>(x, y, z, w, t)</math> such that each of the boxes <math>(x, y, z, w)</math> has at least <math>1</math> ball. The <math>N</math> balls in a row have <math>N-1</math> gaps among them. We are going to put <math>4</math> or <math>3</math> divisors into those <math>N-1</math> gaps. There are <math>2</math> cases of how to put the divisors. |
Case <math>1</math>: | Case <math>1</math>: | ||
− | Put 4 divisors into <math>N-1</math> gaps. It corresponds to | + | Put 4 divisors into <math>N-1</math> gaps. It corresponds to each of <math>(a, b, c, d, 1)</math> has at least one term. There are <math>\binom{N-1}{4}</math> terms. |
Case <math>2</math>: | Case <math>2</math>: | ||
− | Put 3 divisors into <math>N-1</math> gaps. It corresponds to | + | Put 3 divisors into <math>N-1</math> gaps. It corresponds to each of <math>(a, b, c, d)</math> has at least one term. There are <math>\binom{N-1}{3}</math> terms. |
So, there are <math>\binom{N-1}{4}+\binom{N-1}{3}=\binom{N}{4}</math> terms. <math>\binom{N}{4} = 1001</math>, <math>N=\boxed{\text{(B) }14}</math> | So, there are <math>\binom{N-1}{4}+\binom{N-1}{3}=\binom{N}{4}</math> terms. <math>\binom{N}{4} = 1001</math>, <math>N=\boxed{\text{(B) }14}</math> |
Revision as of 08:06, 5 October 2021
Contents
Problem
For some particular value of , when is expanded and like terms are combined, the resulting expression contains exactly terms that include all four variables and , each to some positive power. What is ?
Solution 1
All the desired terms are in the form , where (the part is necessary to make stars and bars work better.) Since , , , and must be at least ( can be ), let , , , and , so . Now, we use stars and bars (also known as ball and urn) to see that there are or solutions to this equation. We notice that , which leads us to guess that is around these numbers. This suspicion proves to be correct, as we see that , giving us our answer of .
- An alternative is to instead make the transformation , so , and all variables are positive integers. The solution to this, by Stars and Bars is and we can proceed as above.
Solution 2
By Hockey Stick Identity, the number of terms that have all raised to a positive power is . We now want to find some such that . As mentioned above, after noticing that , and some trial and error, we find that , giving us our answer of
Solution 3 (Stars and Bars)
5 sections () 4 of which need at least 1 object. . Test the choices and find that
Solution 4 (Casework)
The terms are in the form , where . The problem becomes distributing identical balls to different boxes such that each of the boxes has at least ball. The balls in a row have gaps among them. We are going to put or divisors into those gaps. There are cases of how to put the divisors.
Case : Put 4 divisors into gaps. It corresponds to each of has at least one term. There are terms.
Case : Put 3 divisors into gaps. It corresponds to each of has at least one term. There are terms.
So, there are terms. ,
~isabelchen
Video Solution
https://www.youtube.com/watch?v=R3eJW3PCYMs
Video Solution 2
https://youtu.be/TpG8wlj4eRA with 5 Stars and Bars examples preceding the solution. Time stamps in description to skip straight to solution.
~IceMatrix
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.