Difference between revisions of "2021 AMC 12A Problems/Problem 5"

(Solution 3)
m (Solution 3)
Line 28: Line 28:
 
==Solution 3==
 
==Solution 3==
  
We have <math>66 \times \left(1 + \frac{10a+b}{100}\right) + \frac{1}{2} = 66 \times \left(1+ \frac{10a+b}{99}\right)</math>
+
We have <cmath>66 \cdot \left(1 + \frac{10a+b}{100}\right) + \frac{1}{2} = 66 \cdot \left(1+ \frac{10a+b}{99}\right).</cmath>
 
+
Expanding both sides, we have <cmath>66 + \frac{33(10a+b)}{50} + \frac{1}{2} = 66 + \frac{2(10a+b)}{3}.</cmath>
Expanding both sides, we have <math>66 + \frac{33(10a+b)}{50} + \frac{1}{2} = 66 + \frac{2(10a+b)}{3}</math>
+
Subtracting <math>66</math> from both sides, we have <cmath>\frac{33(10a+b)}{50} + \frac{1}{2} = \frac{2(10a+b)}{3}.</cmath>
 
+
Multiplying both sides by <math>50 \cdot 3 = 150,</math> we have <cmath>99(10a+b) + 75 = 100(10a+b).</cmath>
Subtracting <math>66</math> from both sides, we have <math>\frac{33(10a+b)}{50} + \frac{1}{2} = \frac{2(10a+b)}{3}</math>
+
Thus, the answer is <math>10a+b = \boxed{\textbf{(E) }75}.</math>
 
 
Multiplying both sides by <math>50 \times 3 = 150,</math> we have <math>99(10a+b) + 75 = 100(10a+b)</math>
 
 
 
Thus, <math>10a+b = \boxed{\textbf{(E) }75}.</math>
 
  
 
-mathboy282
 
-mathboy282

Revision as of 12:33, 22 August 2021

The following problem is from both the 2021 AMC 10A #8 and 2021 AMC 12A #5, so both problems redirect to this page.

Problem

When a student multiplied the number $66$ by the repeating decimal, $\underline{1}.\underline{a} \ \underline{b} \ \underline{a} \ \underline{b}\ldots=\underline{1}.\overline{\underline{a} \ \underline{b}},$ where $a$ and $b$ are digits, he did not notice the notation and just multiplied $66$ times $\underline{1}.\underline{a} \ \underline{b}.$ Later he found that his answer is $0.5$ less than the correct answer. What is the $2$-digit number $\underline{a} \ \underline{b}?$

$\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75$

Solution 1

We are given that $66\Bigl(\underline{1}.\overline{\underline{a} \ \underline{b}}\Bigr)-0.5=66\Bigl(\underline{1}.\underline{a} \ \underline{b}\Bigr),$ from which \begin{align*} 66\Bigl(\underline{1}.\overline{\underline{a} \ \underline{b}}\Bigr)-66\Bigl(\underline{1}.\underline{a} \ \underline{b}\Bigr)&=0.5 \\ 66\Bigl(\underline{1}.\overline{\underline{a} \ \underline{b}} - \underline{1}.\underline{a} \ \underline{b}\Bigr)&=0.5 \\ 66\Bigl(\underline{0}.\underline{0} \ \underline{0} \ \overline{\underline{a} \ \underline{b}}\Bigr)&=0.5 \\ 66\left(\frac{1}{100}\cdot\underline{0}.\overline{\underline{a} \ \underline{b}}\right)&=\frac12 \\ \underline{0}.\overline{\underline{a} \ \underline{b}}&=\frac{25}{33} \\ \underline{0}.\overline{\underline{a} \ \underline{b}}&=0.\overline{75} \\ \underline{a} \ \underline{b}&=\boxed{\textbf{(E) }75}. \end{align*} ~MRENTHUSIASM

Solution 2

It is known that $\underline{0}.\overline{\underline{a} \ \underline{b}}=\frac{\underline{a} \ \underline{b}}{99}$ and $\underline{0}.\underline{a} \ \underline{b}=\frac{\underline{a} \ \underline{b}}{100}.$

Let $x=\underline{a} \ \underline{b}.$ We have \[66\biggl(1+\frac{x}{99}\biggr)-66\biggl(1+\frac{x}{100}\biggr)=0.5.\] Expanding and simplifying give $\frac{x}{150}=0.5,$ so $x=\boxed{\textbf{(E) }75}.$

~aop2014 ~BakedPotato66 ~MRENTHUSIASM

Solution 3

We have \[66 \cdot \left(1 + \frac{10a+b}{100}\right) + \frac{1}{2} = 66 \cdot \left(1+ \frac{10a+b}{99}\right).\] Expanding both sides, we have \[66 + \frac{33(10a+b)}{50} + \frac{1}{2} = 66 + \frac{2(10a+b)}{3}.\] Subtracting $66$ from both sides, we have \[\frac{33(10a+b)}{50} + \frac{1}{2} = \frac{2(10a+b)}{3}.\] Multiplying both sides by $50 \cdot 3 = 150,$ we have \[99(10a+b) + 75 = 100(10a+b).\] Thus, the answer is $10a+b = \boxed{\textbf{(E) }75}.$

-mathboy282

Video Solution (Simple & Quick)

https://youtu.be/9HI79V-vtCU

~ Education, the Study of Everything

Video Solution by Aaron He

https://www.youtube.com/watch?v=xTGDKBthWsw&t=4m12s

Video Solution (Use of Properties of Repeating Decimals)

https://www.youtube.com/watch?v=zS1u-ohUDzQ&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=6\

~North America Math Contest Go Go Go

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=MUHja8TpKGw&t=359s

Video Solution by Hawk Math

https://www.youtube.com/watch?v=P5al76DxyHY

Video Solution (Using Repeating Decimal Properties)

https://youtu.be/vQZ13WiL4WU

~ pi_is_3.14

Video Solution

https://youtu.be/DOF3FYUsXsU

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/s6E4E06XhPU?t=360 (AMC 10A)

https://youtu.be/rEWS75W0Q54?t=511 (AMC 12A)

~IceMatrix

Video Solution by The Learning Royal

https://youtu.be/AWjOeBFyeb4

See also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png