Difference between revisions of "2019 AMC 12B Problems/Problem 25"
(→Solution 3 (Complex Numbers)) |
(→Solution 3 (Complex Numbers)) |
||
Line 43: | Line 43: | ||
==Solution 3 (Complex Numbers)== | ==Solution 3 (Complex Numbers)== | ||
− | Let <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> correspond to the complex numbers <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math>. Then, the complex representations of the centroids are <math>(a+b+c)/3</math>, <math>(b+c+d)/3</math>, and <math>(a+c+d)/3</math>. The pairwise distances between the centroids are <math>\lvert (d-a)/3 \rvert</math>, <math>\lvert (b-a)/3 \rvert</math>, and <math>\lvert (b-d)/3 \rvert</math>, all equal. Thus, <math>\lvert (b-a)/3 \rvert=\lvert (d-a)/3 \rvert=\lvert (b-d)/3 \rvert</math>, so <math>\lvert (b-a) \rvert=\lvert (d-a) \rvert=\lvert (b-d) \rvert</math>. Hence, <math>\triangle DBA</math> is equilateral. | + | Let <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> correspond to the complex numbers <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math>, respectively. Then, the complex representations of the centroids are <math>(a+b+c)/3</math>, <math>(b+c+d)/3</math>, and <math>(a+c+d)/3</math>. The pairwise distances between the centroids are <math>\lvert (d-a)/3 \rvert</math>, <math>\lvert (b-a)/3 \rvert</math>, and <math>\lvert (b-d)/3 \rvert</math>, all equal. Thus, <math>\lvert (b-a)/3 \rvert=\lvert (d-a)/3 \rvert=\lvert (b-d)/3 \rvert</math>, so <math>\lvert (b-a) \rvert=\lvert (d-a) \rvert=\lvert (b-d) \rvert</math>. Hence, <math>\triangle DBA</math> is equilateral. |
By the Law of Cosines, | By the Law of Cosines, | ||
Line 50: | Line 50: | ||
<math>[ABCD]=10\sqrt{3}+6(\sin{\angle BCD}-\sqrt{3}\cos(\angle BCD))=10\sqrt{3}+6(\sin(180^{\circ} -\angle BCD)-\sqrt{3}\cos(180^{\circ} - \angle BCD))</math> | <math>[ABCD]=10\sqrt{3}+6(\sin{\angle BCD}-\sqrt{3}\cos(\angle BCD))=10\sqrt{3}+6(\sin(180^{\circ} -\angle BCD)-\sqrt{3}\cos(180^{\circ} - \angle BCD))</math> | ||
− | <math>= 10\sqrt{3}+12\sin(120^{\circ}-\angle BCD) \ | + | <math>= 10\sqrt{3}+12\sin(120^{\circ}-\angle BCD) \le 12 + 10\sqrt{3}</math>. Thus, the maximum possible area of <math>ABCD</math> is <math>\boxed{\textbf{(C) }12 + 10\sqrt{3}}</math>. |
~ Leo.Euler | ~ Leo.Euler |
Revision as of 10:18, 20 August 2021
Problem
Let be a convex quadrilateral with
and
Suppose that the centroids of
and
form the vertices of an equilateral triangle. What is the maximum possible value of the area of
?
Solution 1 (vectors)
Place an origin at , and assign position vectors of
and
. Since
is not parallel to
, vectors
and
are linearly independent, so we can write
for some constants
and
. Now, recall that the centroid of a triangle
has position vector
.
Thus the centroid of is
; the centroid of
is
; and the centroid of
is
.
Hence ,
, and
. For
to be equilateral, we need
. Further,
. Hence we have
, so
is equilateral.
Now let the side length of be
, and let
. By the Law of Cosines in
, we have
. Since
is equilateral, its area is
, while the area of
is
. Thus the total area of
is
, where in the last step we used the subtraction formula for
. Alternatively, we can use calculus to find the local maximum. Observe that
has maximum value
when e.g.
, which is a valid configuration, so the maximum area is
.
Solution 2
Let ,
,
be the centroids of
,
, and
respectively, and let
be the midpoint of
.
,
, and
are collinear due to well-known properties of the centroid. Likewise,
,
, and
are collinear as well. Because (as is also well-known)
and
, we have
. This implies that
is parallel to
, and in terms of lengths,
. (SAS Similarity)
We can apply the same argument to the pair of triangles and
, concluding that
is parallel to
and
. Because
(due to the triangle being equilateral),
, and the pair of parallel lines preserve the
angle, meaning
. Therefore
is equilateral.
At this point, we can finish as in Solution 1, or, to avoid using trigonometry, we can continue as follows:
Let , where
due to the Triangle Inequality in
. By breaking the quadrilateral into
and
, we can create an expression for the area of
. We use the formula for the area of an equilateral triangle given its side length to find the area of
and Heron's formula to find the area of
.
After simplifying,
Substituting , the expression becomes
We can ignore the for now and focus on
.
By the Cauchy-Schwarz inequality,
The RHS simplifies to , meaning the maximum value of
is
.
Thus the maximum possible area of is
.
Solution 3 (Complex Numbers)
Let ,
,
, and
correspond to the complex numbers
,
,
, and
, respectively. Then, the complex representations of the centroids are
,
, and
. The pairwise distances between the centroids are
,
, and
, all equal. Thus,
, so
. Hence,
is equilateral.
By the Law of Cosines,
.
. Thus, the maximum possible area of
is
.
~ Leo.Euler
See Also
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.