Difference between revisions of "1998 AIME Problems/Problem 14"
(problem / solution) |
m (→Solution: failed to parse error) |
||
Line 15: | Line 15: | ||
<div style="text-align:center;"><math>p = \frac{2(m+2)(n+2)}{(m-2)(n-2) - 8}</math></div> | <div style="text-align:center;"><math>p = \frac{2(m+2)(n+2)}{(m-2)(n-2) - 8}</math></div> | ||
− | Clearly, we want to minimize the denominator, so <math>\displaystyle (m-2)(n-2) - 8 = 1 \Longrightarrow (m-2)(n-2) = 9</math>. The possible pairs of factors of <math>9</math> are <math>\displaystyle (1,9)(3,3)</math>. These give <math>m = 3, n = 11 \displaystyle</math> and <math>m = 5, n = 5</math> respectively. Substituting into the numerator, we see that the first pair gives <math>130</math>, while the second pair gives <math>98</math>. We can quickly test for the denominator assuming other values to convince ourselves that <math>1</math> is the best possible value for the denominator. Hence, the solution is <math> | + | Clearly, we want to minimize the denominator, so <math>\displaystyle (m-2)(n-2) - 8 = 1 \Longrightarrow (m-2)(n-2) = 9</math>. The possible pairs of factors of <math>9</math> are <math>\displaystyle (1,9)(3,3)</math>. These give <math>m = 3, n = 11 \displaystyle</math> and <math>m = 5, n = 5</math> respectively. Substituting into the numerator, we see that the first pair gives <math>130</math>, while the second pair gives <math>98</math>. We can quickly test for the denominator assuming other values to convince ourselves that <math>1</math> is the best possible value for the denominator. Hence, the solution is <math>130</math>. |
== See also == | == See also == |
Revision as of 10:22, 9 September 2007
Problem
An rectangular box has half the volume of an rectangular box, where and are integers, and What is the largest possible value of ?
Solution
Let’s solve for :
For the denominator, we will use a factoring trick (colloquially known as SFFT), which states that .
Clearly, we want to minimize the denominator, so . The possible pairs of factors of are . These give and respectively. Substituting into the numerator, we see that the first pair gives , while the second pair gives . We can quickly test for the denominator assuming other values to convince ourselves that is the best possible value for the denominator. Hence, the solution is .
See also
1998 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |