Difference between revisions of "2021 IMO Problems/Problem 2"
(Created page) |
(→Video solution) |
||
Line 3: | Line 3: | ||
<cmath>\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}</cmath> | <cmath>\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}</cmath> | ||
holds for all real numbers <math>x_1,x_2,\dots,x_n</math>. | holds for all real numbers <math>x_1,x_2,\dots,x_n</math>. | ||
+ | |||
+ | ==Solution with Integral == | ||
+ | https://youtu.be/akJOPrh5sqg | ||
==Video solution== | ==Video solution== | ||
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems] | https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems] |
Revision as of 09:33, 27 July 2021
Problem
Show that the inequality holds for all real numbers .
Solution with Integral
Video solution
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]