Difference between revisions of "2021 IMO Problems/Problem 2"

(Created page)
 
(Video solution)
Line 3: Line 3:
 
<cmath>\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}</cmath>
 
<cmath>\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}</cmath>
 
holds for all real numbers <math>x_1,x_2,\dots,x_n</math>.
 
holds for all real numbers <math>x_1,x_2,\dots,x_n</math>.
 +
 +
==Solution with Integral ==
 +
https://youtu.be/akJOPrh5sqg
  
 
==Video solution==
 
==Video solution==
 
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]
 
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]

Revision as of 09:33, 27 July 2021

Problem

Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\] holds for all real numbers $x_1,x_2,\dots,x_n$.

Solution with Integral

https://youtu.be/akJOPrh5sqg

Video solution

https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]