Difference between revisions of "Factor Theorem"

Line 15: Line 15:
  
 
[[Category:Algebra]]
 
[[Category:Algebra]]
[[Category:Polynomial]]
+
[[Category:Polynomials]]
 
[[Category:Theorems]]
 
[[Category:Theorems]]

Revision as of 12:06, 14 July 2021

The Factor Theorem says that if $P(x)$ is a polynomial, then $x-a$ is a factor of $P(x)$ if $P(a)=0$.

Proof

If $x - a$ is a factor of $P(x)$, then $P(x) = (x - a)Q(x)$, where $Q(x)$ is a polynomial with $\deg(Q(x)) = \deg(P(x)) - 1$. Then $P(a) = (a - a)Q(a) = 0$.

Now suppose that $P(a) = 0$.

Apply Remainder Theorem to get $P(x) = (x - a)Q(x) + R(x)$, where $Q(x)$ is a polynomial with $\deg(Q(x)) = \deg(P(x)) - 1$ and $R(x)$ is the remainder polynomial such that $0\le\deg(R(x)) < \deg(x - a) = 1$. This means that $R(x)$ can be at most a constant polynomial.

Substitute $x = a$ and get $P(a) = (a - a)Q(a) + R(a) = 0\Rightarrow R(a) = 0$. Since $R(x)$ is a constant polynomial, $R(x) = 0$ for all $x$.

Therefore, $P(x) = (x - a)Q(x)$, which shows that $x - a$ is a factor of $P(x)$.

This article is a stub. Help us out by expanding it.