Difference between revisions of "2016 APMO Problems/Problem 5"
(→Solution) |
(→Solution) |
||
Line 28: | Line 28: | ||
This gives that <math>\text{Im}(f) \in \left(\frac{f(2x)}{2},\infty\right)</math>. Putting <math>x=\frac{1}{2}</math>, we get <math>\text{Im}(f) \in \left(\frac{1}{2},\infty\right)</math>. By induction, surjectivity is proved as <math>\lim_{m \to \infty}\frac{1}{2^m}=0</math> and we are essentially done. <math>\square</math> | This gives that <math>\text{Im}(f) \in \left(\frac{f(2x)}{2},\infty\right)</math>. Putting <math>x=\frac{1}{2}</math>, we get <math>\text{Im}(f) \in \left(\frac{1}{2},\infty\right)</math>. By induction, surjectivity is proved as <math>\lim_{m \to \infty}\frac{1}{2^m}=0</math> and we are essentially done. <math>\square</math> | ||
− | Now, we have claim that if <math>a+b=c+d</math> for some <math>a,b,c,d \in \mathbb{R}^+</math>, then <math>f(a)+f(b)=f(c)+f(d)</math>. This can be achieved by putting <math>a=xf(z)+y</math>, | + | Now, we have claim that if <math>a+b=c+d</math> for some <math>a,b,c,d \in \mathbb{R}^+</math>, then <math>f(a)+f(b)=f(c)+f(d)</math>. This can be achieved by putting <math>a=xf(z)+y</math>, <math>b=yf(z)+x</math>, <math>c=x'f(z)+y'</math> and <math>d=y'f(z)+x'</math>. Let us calculate <math>f(a)+f(b)</math> now. |
+ | e | ||
+ | <cmath>f(a)+f(b)=(z+1)f(x+y)=(z+1)f\left(\frac{a+b}{f(z)+1}\right)=(z+1)f\left(\frac{a'+b'}{f(z)+1}\right)=(z+1)f(x'+y')=f(a')+f(b').</cmath> |
Revision as of 03:28, 14 July 2021
Problem
Find all functions such that for all positive real numbers .
Solution
We claim that is the only solution. It is easy to check that it works. Now, we will break things down in several claims. Let be the assertion to the Functional Equation.
Claim 1: is injective.
Proof: Assume for some . Now, from and we have:
Now comparing, we have as desired.
This gives us the power to compute . From we get and injectivity gives . Showing that is unbounded above is also easy as we can fix and let blow up to in the original Functional equation..
Claim 2: is surjective.
Proof: gives
This gives that . Putting , we get . By induction, surjectivity is proved as and we are essentially done.
Now, we have claim that if for some , then . This can be achieved by putting , , and . Let us calculate now. e