Difference between revisions of "2021 JMPSC Invitationals Problems/Problem 9"
(Created page with "==Problem== In <math>\triangle ABC</math>, let <math>D</math> be on <math>\overline{AB}</math> such that <math>AD=DC</math>. If <math>\angle ADC=2\angle ABC</math>, <math>AD=1...") |
Mathdreams (talk | contribs) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
asdf | asdf | ||
+ | |||
+ | ==See also== | ||
+ | #[[2021 JMPSC Invitational Problems|Other 2021 JMPSC Invitational Problems]] | ||
+ | #[[2021 JMPSC Invitational Answer Key|2021 JMPSC Invitational Answer Key]] | ||
+ | #[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]] | ||
+ | {{JMPSC Notice}} |
Revision as of 16:28, 11 July 2021
Problem
In , let be on such that . If , , and , find
Solution
asdf
See also
- Other 2021 JMPSC Invitational Problems
- 2021 JMPSC Invitational Answer Key
- All JMPSC Problems and Solutions
The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition.