Difference between revisions of "2004 AMC 12A Problems/Problem 16"
MRENTHUSIASM (talk | contribs) m (→Solution) |
MRENTHUSIASM (talk | contribs) m (Undo revision 157667 by MRENTHUSIASM (talk)) (Tag: Undo) |
||
Line 9: | Line 9: | ||
== Solution == | == Solution == | ||
− | For all real numbers <math>a,b</math> and <math>c</math> such that <math>b>0</math> and <math>b\neq1,</math> note that: | + | For all real numbers <math>a,b,</math> and <math>c</math> such that <math>b>0</math> and <math>b\neq1,</math> note that: |
<ol style="margin-left: 1.5em;"> | <ol style="margin-left: 1.5em;"> | ||
<li><math>\log_b a</math> is defined if and only if <math>a>0.</math></li><p> | <li><math>\log_b a</math> is defined if and only if <math>a>0.</math></li><p> |
Revision as of 15:43, 10 July 2021
Problem
The set of all real numbers for which
is defined is . What is the value of ?
Solution
For all real numbers and such that and note that:
- is defined if and only if
- if and only if
Therefore, we have from which
~Azjps (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
See also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |