Difference between revisions of "Factor Theorem"
m |
m |
||
Line 6: | Line 6: | ||
Now suppose that <math>P(a) = 0</math>. | Now suppose that <math>P(a) = 0</math>. | ||
− | Apply [[Remainder Theorem]] to get <math>P(x) = (x - a)Q(x) + R(x)</math>, where <math>Q(x)</math> is a polynomial with <math>\deg(Q(x)) = \deg(P(x)) - 1</math> and <math>R(x)</math> is the | + | Apply [[Remainder Theorem]] to get <math>P(x) = (x - a)Q(x) + R(x)</math>, where <math>Q(x)</math> is a polynomial with <math>\deg(Q(x)) = \deg(P(x)) - 1</math> and <math>R(x)</math> is the remainder polynomial such that <math>0\le\deg(R(x)) < \deg(x - a) = 1</math>. This means that <math>R(x)</math> can be at most a [[constant]] polynomial. |
Substitute <math>x = a</math> and get <math>P(a) = (a - a)Q(a) + R(a) = 0\Rightarrow R(a) = 0</math>. Since <math>R(x)</math> is a constant polynomial, <math>R(x) = 0</math> for all <math>x</math>. | Substitute <math>x = a</math> and get <math>P(a) = (a - a)Q(a) + R(a) = 0\Rightarrow R(a) = 0</math>. Since <math>R(x)</math> is a constant polynomial, <math>R(x) = 0</math> for all <math>x</math>. |
Revision as of 21:52, 4 July 2021
The Factor Theorem says that if is a polynomial, then is a factor of if .
Proof
If is a factor of , then , where is a polynomial with . Then .
Now suppose that .
Apply Remainder Theorem to get , where is a polynomial with and is the remainder polynomial such that . This means that can be at most a constant polynomial.
Substitute and get . Since is a constant polynomial, for all .
Therefore, , which shows that is a factor of .
This article is a stub. Help us out by expanding it.