Difference between revisions of "2021 AMC 10A Problems/Problem 22"
MRENTHUSIASM (talk | contribs) m (→Solution 2 (Different Variable Choice, Similar Logic)) |
(→Solution 4) |
||
Line 50: | Line 50: | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
− | ==Solution | + | ==Solution 4== |
− | Let <math> | + | Let <math>(2k-1)-2n</math> be pages be borrowed, the sum of digits in those pages is <math>(2n+2k+1)(n-k)</math> while the sum of the rest pages is <math>1275-(2n+2k+1)(n-k)</math> and we know the average of the rest is <math>\frac{1275-(2n+2k+1)}{50-2n+2k}</math> which equals to 19; |
− | + | multiply this out we got <math>950-38(n-k)=1275-(2n+2k+1)(n-k)</math> and we got <math>(2n+2k-37)(n-k)=325</math> | |
− | + | <math>325=25*13</math> and we can see <math>(n-k)=13</math> and that is desired <math>\boxed{B}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Video Solution by OmegaLearn (Arithmetic Sequences and System of Equations) == | == Video Solution by OmegaLearn (Arithmetic Sequences and System of Equations) == |
Revision as of 12:33, 11 August 2021
Contents
Problem
Hiram's algebra notes are pages long and are printed on sheets of paper; the first sheet contains pages and , the second sheet contains pages and , and so on. One day he leaves his notes on the table before leaving for lunch, and his roommate decides to borrow some pages from the middle of the notes. When Hiram comes back, he discovers that his roommate has taken a consecutive set of sheets from the notes and that the average (mean) of the page numbers on all remaining sheets is exactly . How many sheets were borrowed?
Solution 1
Suppose the roommate took pages through , or equivalently, page numbers through . Because there are numbers taken, The first possible solution that comes to mind is if , which indeed works, giving and . The answer is
~Lcz
Solution 2
Suppose the smallest page number borrowed is and pages are borrowed. It follows that the largest page number borrowed is
We have the following preconditions:
- pages are borrowed means that sheets are borrowed, from which must be even.
- must be odd, as the smallest page number borrowed is on the right side (odd-numbered).
- The sum of the page numbers borrowed is
Together, we have The factors of are Since is even, we only have a few cases to consider: Since only are possible:
- If then there will not be sufficient pages when we take pages out starting from page
- If then the average page number of all remaining sheets will be undefined, as there will be no sheets remaining after we take pages ( sheets) out starting from page
Therefore, the only possibility is from which pages, or sheets, are borrowed.
~MRENTHUSIASM
Solution 4
Let be pages be borrowed, the sum of digits in those pages is while the sum of the rest pages is and we know the average of the rest is which equals to 19; multiply this out we got and we got and we can see and that is desired
Video Solution by OmegaLearn (Arithmetic Sequences and System of Equations)
~ pi_is_3.14
See also
2021 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.