Difference between revisions of "2006 AMC 10B Problems/Problem 15"
(→Solution 1) |
Dairyqueenxd (talk | contribs) (→Problem) |
||
Line 14: | Line 14: | ||
</asy> | </asy> | ||
− | <math> \ | + | <math> \textbf{(A) } 6\qquad \textbf{(B) } 4\sqrt{3}\qquad \textbf{(C) } 8\qquad \textbf{(D) } 9\qquad \textbf{(E) } 6\sqrt{3} </math> |
== Solutions == | == Solutions == |
Revision as of 13:18, 26 January 2022
Problem
Rhombus is similar to rhombus . The area of rhombus is and . What is the area of rhombus ?
Solutions
Solution 1
Using the property that opposite angles are equal in a rhombus, and . It is easy to see that rhombus is made up of equilateral triangles and . Let the lengths of the sides of rhombus be .
The longer diagonal of rhombus is . Since is a side of an equilateral triangle with a side length of , . The longer diagonal of rhombus is . Since is twice the length of an altitude of of an equilateral triangle with a side length of , .
The ratio of the longer diagonal of rhombus to rhombus is . Therefore, the ratio of the area of rhombus to rhombus is .
Let be the area of rhombus . Then , so .
Solution 2
Triangle DAB is equilateral so triangles , , , , and are all congruent with angles , and from which it follows that rhombus has one third the area of rhombus i.e. .
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.