Difference between revisions of "1967 AHSME Problems/Problem 32"
(→Problem) |
m (→See also) |
||
Line 51: | Line 51: | ||
== See also == | == See also == | ||
− | {{AHSME box|year=1967|num-b=31|num-a=33}} | + | {{AHSME 40p box|year=1967|num-b=31|num-a=33}} |
− | [[Category:Intermediate Geometry Problems]] | + | [[Category: Intermediate Geometry Problems]] |
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:40, 16 August 2023
Contents
Problem
In quadrilateral with diagonals and , intersecting at , , , , , and . The length of is:
Solution 1
After drawing the diagram, we see that we actually have a lot of lengths to work with. Considering triangle ABD, we know values of , but we want to find the value of AD. We can apply stewart's theorem now, letting , and we have , and we see that ,
Solution 2
(Diagram not to scale)
Since , is cyclic through power of a point. From the given information, we see that and . Hence, we can find and . Letting be , we can use Ptolemy's to get Since we are solving for
- PhunsukhWangdu
See also
1967 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 31 |
Followed by Problem 33 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.