Difference between revisions of "2021 AMC 10A Problems/Problem 11"
(→Solution 2 (Easy)) |
MRENTHUSIASM (talk | contribs) m (→Solution 1: Changed format a little.) |
||
Line 5: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
− | We have <cmath>2021_b - 221_b = 2000_b - 200_b = 2b^3 - 2b^2 = 2b^2(b-1) | + | We have |
+ | <cmath>\begin{align*} | ||
+ | 2021_b - 221_b &= (2021_b - 21_b) - (221_b - 21_b) \\ | ||
+ | &= 2000_b - 200_b \\ | ||
+ | &= 2b^3 - 2b^2 \\ | ||
+ | &= 2b^2(b-1), | ||
+ | \end{align*}</cmath> | ||
+ | which is divisible by <math>3</math> <b><i>unless</i></b> <math>b\equiv2\pmod{3}.</math> The only choice congruent to <math>2</math> modulo <math>3</math> is <math>\boxed{\textbf{(E)} ~8}.</math> | ||
~MRENTHUSIASM | ~MRENTHUSIASM |
Revision as of 18:39, 5 May 2021
Contents
Problem
For which of the following integers is the base- number not divisible by ?
Solution 1
We have which is divisible by unless The only choice congruent to modulo is
~MRENTHUSIASM
Solution 2 (Easy)
Vertically subtracting we see that the ones place becomes 0, and so does the place. Then, we perform a carry (make sure the carry is in !). Let . Then, we have our final number as
Now, when expanding, we see that this number is simply .
Now, notice that the final number will only be congruent to if either , or if (because note that would become , and would become as well, and therefore the final expression would become . Therefore, must be . Among the answers, only 8 is , and therefore our answer is
- icecreamrolls8
Video Solution (Simple and Quick)
~ Education, the Study of Everything
Video Solution
https://www.youtube.com/watch?v=XBfRVYx64dA&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=10
~North America Math Contest Go Go Go
Video Solution 3
~savannahsolver
Video Solution by TheBeautyofMath
~IceMatrix
See Also
2021 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.