Difference between revisions of "Trivial Inequality"
Borealbear (talk | contribs) m (Moved first problem to the end) |
(→Proof) |
||
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
− | + | Suppose there exists a real <math>x</math> such that <math>x^2<0</math>. We can have either <math>x=0</math>, <math>x>0</math>, or <math>x<0</math>. If <math>x=0</math>, then <math>x^2 = 0^2 \ge 0</math>. If <math>x>0</math>, then <math>x^2 = (x)(x) > 0</math> by the closure of the set of positive numbers under multiplication. Finally, if <math>x<0</math>, then <math>x^2 = (-x)(-x) > 0,</math> again by the closure of the set of positive numbers under multiplication. | |
Therefore, <math>x^2 \ge 0</math> for all real <math>x</math>, as claimed. | Therefore, <math>x^2 \ge 0</math> for all real <math>x</math>, as claimed. |
Revision as of 21:10, 29 May 2021
The trivial inequality is an inequality that states that the square of any real number is nonnegative. Its name comes from its simplicity and straightforwardness.
Contents
Statement
For all real numbers , , equality holds if and only if .
Proof
Suppose there exists a real such that . We can have either , , or . If , then . If , then by the closure of the set of positive numbers under multiplication. Finally, if , then again by the closure of the set of positive numbers under multiplication.
Therefore, for all real , as claimed.
Applications
The trivial inequality is one of the most commonly used theorems in mathematics. It is very well-known and does not require proof.
One application is maximizing and minimizing quadratic functions. It gives an easy proof of the two-variable case of the Arithmetic Mean-Geometric Mean inequality:
Suppose that and are nonnegative reals. By the trivial inequality, we have , or . Adding to both sides, we get . Since both sides of the inequality are nonnegative, it is equivalent to , and thus we have as desired.
Problems
Introductory
- Find all integer solutions of the equation .
- Show that . Solution
- Show that for all real .
Intermediate
- Triangle has and . What is the largest area that this triangle can have? (AIME 1992)
Olympiad
- Let be the length of the hypotenuse of a right triangle whose two other sides have lengths and . Prove that . When does the equality hold? (1969 Canadian MO)