Difference between revisions of "2021 MECC Mock AMC 10"
(→Problem 6) |
|||
Line 36: | Line 36: | ||
==Problem 6== | ==Problem 6== | ||
Let <math>a_n</math> be a sequence of positive integers with <math>a_0=1</math> and <math>a_1=2</math> and <math>a_n=a_{n-1}\cdot a_{n+1}</math> for all integers <math>n</math> such that <math>n\geq 1</math>. Find <math>a_{2021}+a_{2023}+a_{2025}</math>. | Let <math>a_n</math> be a sequence of positive integers with <math>a_0=1</math> and <math>a_1=2</math> and <math>a_n=a_{n-1}\cdot a_{n+1}</math> for all integers <math>n</math> such that <math>n\geq 1</math>. Find <math>a_{2021}+a_{2023}+a_{2025}</math>. | ||
+ | |||
+ | <math>\textbf{(A)} ~3 \qquad\textbf{(B)} ~\frac{7}{2} \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~\frac{9}{2} \qquad\textbf{(E)} ~5</math> | ||
+ | |||
+ | [[2021 MECC Mock AMC 10 Problems/Problem 6|Solution]] |
Revision as of 22:51, 20 April 2021
Problem 1
Compute
Problem 2
Define a binary operation . Find the number of possible ordered pair of positive integers such that .
Problem 3
can be expressed as . Find .
Problem 4
Compute the number of ways to arrange 2 distinguishable apples and five indistinguishable books.
Problem 5
Galieo, Neton, Timiel, Fidgety and Jay are participants of a game in soccer. Their coach, Mr.Tom, will allocate them into two INDISTINGUISHABLE groups for practice purpose(People in the teams are interchangable). Given that the coach will not put Galieo and Timiel into the same team because they just had a fight. Find the number of ways the coach can put them into two such groups.
Problem 6
Let be a sequence of positive integers with and and for all integers such that . Find .