Difference between revisions of "2021 USAJMO Problems/Problem 6"
Mathisfun286 (talk | contribs) |
|||
Line 1: | Line 1: | ||
− | Let <math>n \geq 4</math> be an integer. Find all positive real solutions to the following system of <math>2n</math> equations: | + | Let <math>n \geq 4</math> be an integer. Find all positive real solutions to the following system of <math>2n</math> equations:\begin{align*} a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7}, \\ &\vdots \\ a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} \end{align*} |
− | |||
− | \begin{align*} | ||
− | a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ | ||
− | a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ | ||
− | a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7}, \\ | ||
− | &\vdots \\ | ||
− | a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} | ||
− | \end{align*} |
Revision as of 08:20, 16 April 2021
Let be an integer. Find all positive real solutions to the following system of equations:\begin{align*} a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7}, \\ &\vdots \\ a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} \end{align*}