Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 13"
m (typo) |
(→Solution) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
<math>\displaystyle (x - x_1)(x - x_2) = x^2 + ax + 1 = 0</math>, so <math>a = -(x_1 + x_2) \displaystyle</math> and <math>x_1 \cdot x_2 = 1</math> (the same goes for <math>b,\ x_3,\ x_4</math>). | <math>\displaystyle (x - x_1)(x - x_2) = x^2 + ax + 1 = 0</math>, so <math>a = -(x_1 + x_2) \displaystyle</math> and <math>x_1 \cdot x_2 = 1</math> (the same goes for <math>b,\ x_3,\ x_4</math>). | ||
+ | |||
+ | |||
+ | <math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 \cdot x_2} | ||
+ | = x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = a^2 - 2</math> | ||
+ | |||
+ | Similarly (for <math>b,\ x_3,\ x_4</math>) <math>\frac{x_3}{x_1x_2x_4} + \frac{x_4}{x_1x_2x_3} = b^2 - 2</math> | ||
So | So | ||
− | <math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3} | + | <math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3} = a^2 + b^2 - 4 \Longrightarrow \mathrm{E}</math> |
==See also== | ==See also== |
Latest revision as of 10:02, 8 May 2007
Problem
If are the roots of the equation and are the roots of the equation , then the expression equals to
Solution
, so and (the same goes for ).
Similarly (for )
So
See also
2007 Cyprus MO, Lyceum (Problems) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 |