Difference between revisions of "2021 AIME II Problems/Problem 7"

(Problem)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
We can't have a solution without a problem.
+
From the fourth equation we get <cmath> d=\frac{30}{abc}. </cmath>, substitute this into the third equation and you get <cmath>abc + \frac{30(ab + bc + ca)}{abc} = abc - \frac{120}{abc} = 14</cmath>. Hence <math>(abc)^2 - 14(abc)-120 = 0</math>. Solving we get <math>abc = -6</math> or <math>abc = 20</math>. From the first and second equation we get <math>ab + bc + ca = ab-3c = -4 \Longrightarrow ab = 3c-4</math>, if <math>abc=-6</math>, substituting we get <math>c(3c-4)=-6</math>. If you try solving this you see that this does not have real solutions in <math>c</math>, so <math>abc</math> must be <math>20</math>. Since <math>abc=20</math>, <math>c=-2 or c=\frac{10}{3}</math>. If <math>c=\frac{10}{3}</math>, then the system <math>a+b=-3</math> and <math>ab = 6</math> does not give you real solutions. So <math>c=-2</math>. From here you already know <math>d=\frac{3}{2}</math> and <math>c=-2</math>, so you can solve for <math>a</math> and <math>b</math> pretty easily and see that <math>a^{2}+b^{2}+c^{2}+d^{2}=\frac{141}{4}</math>. So the answer is <math>\boxed{145}</math>.
  
 
==See also==
 
==See also==
 
{{AIME box|year=2021|n=II|num-b=6|num-a=8}}
 
{{AIME box|year=2021|n=II|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:44, 22 March 2021

Problem

Let $a, b, c,$ and $d$ be real numbers that satisfy the system of equations \[a + b = -3\]\[ab + bc + ca = -4\]\[abc + bcd + cda + dab = 14\]\[abcd = 30.\]There exist relatively prime positive integers $m$ and $n$ such that \[a^2 + b^2 + c^2 + d^2 = \frac{m}{n}.\]Find $m + n$.

Solution

From the fourth equation we get \[d=\frac{30}{abc}.\], substitute this into the third equation and you get \[abc + \frac{30(ab + bc + ca)}{abc} = abc - \frac{120}{abc} = 14\]. Hence $(abc)^2 - 14(abc)-120 = 0$. Solving we get $abc = -6$ or $abc = 20$. From the first and second equation we get $ab + bc + ca = ab-3c = -4 \Longrightarrow ab = 3c-4$, if $abc=-6$, substituting we get $c(3c-4)=-6$. If you try solving this you see that this does not have real solutions in $c$, so $abc$ must be $20$. Since $abc=20$, $c=-2 or c=\frac{10}{3}$. If $c=\frac{10}{3}$, then the system $a+b=-3$ and $ab = 6$ does not give you real solutions. So $c=-2$. From here you already know $d=\frac{3}{2}$ and $c=-2$, so you can solve for $a$ and $b$ pretty easily and see that $a^{2}+b^{2}+c^{2}+d^{2}=\frac{141}{4}$. So the answer is $\boxed{145}$.

See also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png