Difference between revisions of "1956 AHSME Problems/Problem 43"

(Solution)
(Solution)
Line 14: Line 14:
  
 
-coolmath34
 
-coolmath34
 +
 +
-rubslul
  
 
(If you see any cases I missed out, edit them in.)
 
(If you see any cases I missed out, edit them in.)

Revision as of 03:55, 8 March 2021

Problem 43

The number of scalene triangles having all sides of integral lengths, and perimeter less than $13$ is:

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 18$

Solution

We can write all possible triangles adding up to 12 or less \[(2, 4, 5)=11\] \[(3, 4, 5)=12\] \[(2, 3, 4)=9\]

This leaves $\boxed{\textbf{(C)} \quad 3}$ scalene triangles.

-coolmath34

-rubslul

(If you see any cases I missed out, edit them in.)

See Also

1956 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 42
Followed by
Problem 44
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png