Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 9"

 
m (+)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
We consider the sequence of real numbers <math>a_1,a_2,a_3\ldots</math>, such that <math>a_1=0</math>, <math>a_2=1</math> and <math>a_n=a_{n-1}-a_{n-2}</math>, <math>\forall n \in \{3,4,5,6\ldots\}</math>. The value of the term <math>a_{138}</math> is
+
We consider the [[sequence]] of [[real number]]s <math>\displaystyle a_1,a_2,a_3\ldots</math>, such that <math>a_1=0</math>, <math>a_2=1</math> and <math>\displaystyle a_n=a_{n-1}-a_{n-2}</math>, <math>\forall n \in \{3,4,5,6\ldots\}</math>. The value of the term <math>\displaystyle a_{138}</math> is
  
 
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } 2\qquad \mathrm{(E) \ } -2</math>
 
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } 2\qquad \mathrm{(E) \ } -2</math>
  
 
==Solution==
 
==Solution==
The first few terms of the sequence are:
+
The first few terms of the [[recursion|sequence]] are:
  
0, 1, 1, 0, -1, -1, 0, 1, 1, 0 ...
+
<div style="text-align:center;">0, 1, 1, 0, -1, -1, 0, 1, 1, 0 &hellip;</div>
  
The sequence repeats every 6 terms.
+
The sequence repeats every 6 terms, and <math>\displaystyle 138\equiv0\pmod6</math>. <math>a_{138}=-1\Longrightarrow\mathrm{ B}</math>
 
 
<math>138\equiv0\mod6</math>
 
 
 
<math>a_{138}=-1\Rightarrow\mathrm{ B}</math>
 
  
 
==See also==
 
==See also==
*[[2007 Cyprus MO/Lyceum/Problems]]
+
{{CYMO box|year=2007|l=Lyceum|num-b=8|num-a=10}}
 
 
*[[2007 Cyprus MO/Lyceum/Problem 8|Previous Problem]]
 
  
*[[2007 Cyprus MO/Lyceum/Problem 10|Next Problem]]
+
[[Category:Introductory Number Theory Problems]]

Latest revision as of 15:39, 6 May 2007

Problem

We consider the sequence of real numbers $\displaystyle a_1,a_2,a_3\ldots$, such that $a_1=0$, $a_2=1$ and $\displaystyle a_n=a_{n-1}-a_{n-2}$, $\forall n \in \{3,4,5,6\ldots\}$. The value of the term $\displaystyle a_{138}$ is

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } 2\qquad \mathrm{(E) \ } -2$

Solution

The first few terms of the sequence are:

0, 1, 1, 0, -1, -1, 0, 1, 1, 0 …

The sequence repeats every 6 terms, and $\displaystyle 138\equiv0\pmod6$. $a_{138}=-1\Longrightarrow\mathrm{ B}$

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30