Difference between revisions of "British Flag Theorem"
(→Problems) |
(→Problems) |
||
Line 72: | Line 72: | ||
==Problems== | ==Problems== | ||
[http://artofproblemsolving.com/community/c3h579390 2014 MATHCOUNTS Chapter Sprint #29] \\ | [http://artofproblemsolving.com/community/c3h579390 2014 MATHCOUNTS Chapter Sprint #29] \\ | ||
− | [https://artofproblemsolving.com/community/c4h2477234_distances_of_a_point_from_certices_of_a_square__2015_amq_concours_p5 2015 AMQ Concours #5] | + | [https://artofproblemsolving.com/community/c4h2477234_distances_of_a_point_from_certices_of_a_square__2015_amq_concours_p5 2015 AMQ Concours #5] 2005 mathcounts national target #7 |
[[Category:geometry]] | [[Category:geometry]] | ||
[[Category:Theorems]] | [[Category:Theorems]] |
Revision as of 16:35, 26 November 2023
The British flag theorem says that if a point P is chosen inside rectangle ABCD then . The theorem is called the British flag theorem due to the similarities between the British flag and a diagram of the points (shown below):
The theorem also applies if the point is selected outside or on the boundary of the rectangle, although the proof is harder to visualize in this case.
Proof
Squares of lengths suggest right triangles. We build right triangles by drawing a line through perpendicular to two sides of the rectangle, as shown below. Both and are rectangles. Applying the Pythagorean Theorem to each of the four right triangles in the diagram, we have So, we have From rectangles and , we have and , so the expressions above for and are equal, as desired.
Problems
2014 MATHCOUNTS Chapter Sprint #29 \\ 2015 AMQ Concours #5 2005 mathcounts national target #7