Difference between revisions of "2007 Cyprus MO/Lyceum/Problems"

(Problem 10)
(Problem 11)
Line 155: Line 155:
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
If <math>X=\frac{1}{2007 \sqrt{2006}+2006 \sqrt{2007}}</math> and <math>Y=\frac{1}{\sqrt{2006}}-\frac{1}{\sqrt{2007}}</math>, which of the following is correct?
  
 +
A. <math>X=2Y</math>
 +
 +
B. <math>Y=2X</math>
 +
 +
C. <math>x=Y</math>
 +
 +
D. <math>x=D^2</math>
 +
 +
E. <math>Y=X^2</math>
  
 
[[2007 Cyprus MO/Lyceum/Problem 11|Solution]]
 
[[2007 Cyprus MO/Lyceum/Problem 11|Solution]]

Revision as of 12:03, 6 May 2007

Problem 1

If $x-y=1$,then the value of the expression $K=x^2+x-2xy+y^2-y$ is

A. $2$

B. $-2$

C. $1$

D. $-1$

E. $0$

Solution

Problem 2

Given the formula $f(x) = 4^x$, then $f(x+1)-f(x)$ equals to

A. $4$

B. $4^x$

C. $2\cdot4^x$

D. $4^{x+1}$

E. $3\cdot4^x$

Solution

Problem 3

A cyclist drives form town A to town B with velocity $40 \frac{\mathrm{km}}{\mathrm{h}}$ and comes back with velocity $60 \frac{\mathrm{km}}{\mathrm{h}}$. The mean velocity in $\frac{\mathrm{km}}{\mathrm{h}}$ for the total distance is

A. $45$

B. $48$

C. $50$

D. $55$

E. $100$

Solution

Problem 4

We define the operation $a*b = \frac{1+a}{1+b^2}$, $\forall a,b \in \real$.

The value of $(2*0)*1$ is

A. $2$

B. $1$

C. $0$

D. $\frac{1}{2}$

E. $\frac{5}{2}$


Solution

Problem 5

If the remainder of the division of $a$ with $35$ is $23$, then the remainder of the division of $a$ with $7$ is

A. $1$

B. $2$

C. $3$

D. $4$

E. $5$

Solution

Problem 6


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


$ABCD$ is a square of side 2 and $FG$ is an arc of the circle with centre the midpoint $K$ os the side $AB$ and radius 2. The length of the segments $FD=GC=x$ is

A. $\frac{1}{4}$

B. $\frac{\sqrt{2}}{2}$

C. $2-\sqrt{3}$

D. $\sqrt{3}-1$

E. $\sqrt{2}$$-1$


Solution

Problem 7

If the angle of the diagonal d of a rectangle forms an angle $60^\circ$ with one of its sides, then the area of the recangle is

A. $\frac{d^2 \sqrt{3}}{4}$

B. $\frac{d^2}{2}$

C. $2d^2$

D. $d^2 \sqrt{2}$

E. None of these

Solution

Problem 8

If we substract from 2 the inverse number of $x-1$, we get the inverse of $x-1$. Then the number $x+1$ equals to

A. $0$

B. $1$

C. $-1$

D. $3$

E. $\frac{1}{2}$

Solution

Problem 9

We consider the sequence of real numbers $a_1,a_2,a_3,...$ such that $a_1=0$, $a_2=1$ and $a_n=a_{n-1}-a_{n-2}$, $\forall n \in \{3,4,5,6,...\}$. The value of the term $a_{138}$ is

A. $0$

B. $-1$

C. $1$

D. $2$

E. $-2$

Solution

Problem 10

The volume of an orthogonal parallelepiped is $132 {cm}^3$ and its dimensions are integer numbres. The minimum sum of the dimensions is

A. $27cm$

B. $19cm$

C. $20cm$

D. $18cm$

E. None of these

Solution

Problem 11

If $X=\frac{1}{2007 \sqrt{2006}+2006 \sqrt{2007}}$ and $Y=\frac{1}{\sqrt{2006}}-\frac{1}{\sqrt{2007}}$, which of the following is correct?

A. $X=2Y$

B. $Y=2X$

C. $x=Y$

D. $x=D^2$

E. $Y=X^2$

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

See also