Difference between revisions of "2020 AMC 12B Problems/Problem 13"

(Solution 1 (Logic))
Line 16: Line 16:
 
~chrisdiamond10  
 
~chrisdiamond10  
  
~MRENTHUSIASM
+
~MRENTHUSIASM (merged the thoughts of four people)
  
 
=== Solution 2 ===
 
=== Solution 2 ===

Revision as of 04:06, 15 February 2021

Problem

Which of the following is the value of $\sqrt{\log_2{6}+\log_3{6}}?$

$\textbf{(A) } 1 \qquad\textbf{(B) } \sqrt{\log_5{6}} \qquad\textbf{(C) } 2 \qquad\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}} \qquad\textbf{(E) } \sqrt{\log_2{6}}+\sqrt{\log_3{6}}$

Solutions

Solution 1 (Logic)

Using the knowledge of the powers of $2$ and $3$, we know that $\log_2{6}$ is greater than $2.5$ and $\log_3{6}$ is greater than $1.5.$ Only choices $\textbf{(D)}$ and $\textbf{(E)}$ are greater than $2,$ but $\textbf{(E)}$ is certainly incorrect--if we compare the squares of the original expression and $\textbf{(E)},$ they are clearly not equal. So, the answer is $\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.$

Collaborators:

~Baolan

~Solasky (first edit on wiki!)

~chrisdiamond10

~MRENTHUSIASM (merged the thoughts of four people)

Solution 2

$\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\log_2{2}+\log_2{3}+\log_3{2}+\log_3{3}}=\sqrt{2+\log_2{3}+\log_3{2}}$. If we call $\log_2{3} = x$, then we have

$\sqrt{2+x+\frac{1}{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt{\log_2{3}}+\frac{1}{\sqrt{\log_2{3}}}=\sqrt{\log_2{3}}+\sqrt{\log_3{2}}$. So our answer is $\boxed{\textbf{(D)}}$.

~JHawk0224

Solution 3

\[\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\frac{\log{6}}{\log{2}} + \frac{\log{6}}{\log{3}}} = \sqrt{\frac{\log{6}\cdot\log{3} + \log{6}\cdot\log{2}}{\log{3}\cdot\log{2}}} = \sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}}.\] From here, \[\sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}} = \sqrt{\frac{(\log 2 + \log 3)(\log 2 + \log 3)}{\log 2\cdot \log 3}} = \sqrt{\frac{(\log 2)^2 + 2\cdot\log2\cdot\log3 + (\log3)^2}{\log 2\cdot\log 3}}.\] Finally, \[\sqrt{\frac{(\log 2)^2 + 2\cdot\log2\cdot\log3 + (\log3)^2}{\log 2\cdot\log 3}} = \sqrt{\frac{(\log2 + \log3)^2}{\log 2\cdot\log 3}} = \frac{\log 2}{\sqrt{\log 2\cdot\log 3}} + \frac{\log 3}{\sqrt{\log 2\cdot\log 3}} = \sqrt{\frac{\log 2}{\log 3}} + \sqrt{\frac{\log 3}{\log 2}} = \sqrt{\log_3 2} + \sqrt{\log_2 3}.\] Answer: $\boxed{\textbf{(D) } \sqrt{\log_2{3}} + \sqrt{\log_3{2}}}$ ~ TheBeast5520

Note that in this solution, even the most minor steps have been written out. In the actual test, this solution would be quite fast, and much of it could easily be done in your head.

Video Solution

https://youtu.be/0xgTR3UEqbQ

~IceMatrix

Video Solution

https://youtu.be/RdIIEhsbZKw?t=1463

~ pi_is_3.14

Video Solution (Meta-Solving Technique)

https://youtu.be/GmUWIXXf_uk?t=1298

~ pi_is_3.14

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png