Difference between revisions of "2021 AMC 10A Problems/Problem 24"

(Solution)
(Solution)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
The conditions <math>(x+ay)^2 = 4a^2</math> and <math>(ax-y)^2 = a^2</math> give <math>|x+ay| = |2a|</math> and <math>|ax-y| = |a|</math> or <math>x+ay = \pm 2a</math> and <math>ax-y = \pm a</math>. The slopes here are perpendicular, so the quadrilateral is a rectangle.
 
The conditions <math>(x+ay)^2 = 4a^2</math> and <math>(ax-y)^2 = a^2</math> give <math>|x+ay| = |2a|</math> and <math>|ax-y| = |a|</math> or <math>x+ay = \pm 2a</math> and <math>ax-y = \pm a</math>. The slopes here are perpendicular, so the quadrilateral is a rectangle.
Plug in <math>a=1</math> and graph it. We quickly see that the area is <math>2\sqrt{2} \cdot \sqrt{2} = 4</math>, so the answer can't be <math>A</math> or <math>B</math> by testing the values they give (test it!). Now plug in <math>a=2</math>. We see using a ruler that the sides of the rectangle are about <math>\frac74</math> and <math>\frac72</math>. So the area is about <math>\frac{49}8 = 6.125</math>. Testing <math>C</math> we get <math>\frac{16}3</math> which is clearly less than <math>6</math>, so it is out. Testing <math>D</math> we get <math>\frac{32}5</math> which is near our answer, so we leave it. Testing <math>E</math> we get <math>\frac{16}5</math>, way less than <math>6</math>, so it is out. So, the only plausible answer is <math>\boxed{D}</math>
+
Plug in <math>a=1</math> and graph it. We quickly see that the area is <math>2\sqrt{2} \cdot \sqrt{2} = 4</math>, so the answer can't be <math>A</math> or <math>B</math> by testing the values they give (test it!). Now plug in <math>a=2</math>. We see using a ruler that the sides of the rectangle are about <math>\frac74</math> and <math>\frac72</math>. So the area is about <math>\frac{49}8 = 6.125</math>. Testing <math>C</math> we get <math>\frac{16}3</math> which is clearly less than <math>6</math>, so it is out. Testing <math>D</math> we get <math>\frac{32}5</math> which is near our answer, so we leave it. Testing <math>E</math> we get <math>\frac{16}5</math>, way less than <math>6</math>, so it is out. So, the only plausible answer is <math>\boxed{D}</math> ~firebolt360
  
 
== Video Solution by OmegaLearn (System of Equations and Shoelace Formula) ==
 
== Video Solution by OmegaLearn (System of Equations and Shoelace Formula) ==

Revision as of 22:22, 11 February 2021

Problem 24

The interior of a quadrilateral is bounded by the graphs of $(x+ay)^2 = 4a^2$ and $(ax-y)^2 = a^2$, where $a$ a positive real number. What is the area of this region in terms of $a$, valid for all $a > 0$?

$\textbf{(A)} ~\frac{8a^2}{(a+1)^2}\qquad\textbf{(B)} ~\frac{4a}{a+1}\qquad\textbf{(C)} ~\frac{8a}{a+1}\qquad\textbf{(D)} ~\frac{8a^2}{a^2+1}\qquad\textbf{(E)} ~\frac{8a}{a^2+1}$

Solution

The conditions $(x+ay)^2 = 4a^2$ and $(ax-y)^2 = a^2$ give $|x+ay| = |2a|$ and $|ax-y| = |a|$ or $x+ay = \pm 2a$ and $ax-y = \pm a$. The slopes here are perpendicular, so the quadrilateral is a rectangle. Plug in $a=1$ and graph it. We quickly see that the area is $2\sqrt{2} \cdot \sqrt{2} = 4$, so the answer can't be $A$ or $B$ by testing the values they give (test it!). Now plug in $a=2$. We see using a ruler that the sides of the rectangle are about $\frac74$ and $\frac72$. So the area is about $\frac{49}8 = 6.125$. Testing $C$ we get $\frac{16}3$ which is clearly less than $6$, so it is out. Testing $D$ we get $\frac{32}5$ which is near our answer, so we leave it. Testing $E$ we get $\frac{16}5$, way less than $6$, so it is out. So, the only plausible answer is $\boxed{D}$ ~firebolt360

Video Solution by OmegaLearn (System of Equations and Shoelace Formula)

https://youtu.be/2iohPYkZpkQ

~ pi_is_3.14