Difference between revisions of "2021 AMC 12B Problems/Problem 19"
(Created page with "===Solution 1=== Suppose the dice have <math>a</math> and <math>b</math> faces, and WLOG <math>a\geq{b}</math>. Since each die has at least <math>6</math> faces, there will al...") |
|||
Line 1: | Line 1: | ||
− | ===Solution | + | ===Solution=== |
Suppose the dice have <math>a</math> and <math>b</math> faces, and WLOG <math>a\geq{b}</math>. Since each die has at least <math>6</math> faces, there will always be <math>6</math> ways to sum to <math>7</math>. As a result, there must be <math>\tfrac{4}{3}\cdot6=8</math> ways to sum to <math>10</math>. There are at most nine distinct ways to get a sum of <math>10</math>, which are possible whenever <math>a,b\geq{9}</math>. To achieve exactly eight ways, <math>b</math> must have <math>8</math> faces, and <math>a\geq9</math>. Let <math>n</math> be the number of ways to obtain a sum of <math>12</math>, then <math>\tfrac{n}{8a}=\tfrac{1}{12}\implies n=\tfrac{2}{3}a</math>. Since <math>b=8</math>, <math>n\leq8\implies a\leq{12}</math>. In addition to <math>3\mid{a}</math>, we only have to test <math>a=9,12</math>, of which both work. Taking the smaller one, our answer becomes <math>a+b=9+8=\boxed{\textbf{(B)17}}</math>. | Suppose the dice have <math>a</math> and <math>b</math> faces, and WLOG <math>a\geq{b}</math>. Since each die has at least <math>6</math> faces, there will always be <math>6</math> ways to sum to <math>7</math>. As a result, there must be <math>\tfrac{4}{3}\cdot6=8</math> ways to sum to <math>10</math>. There are at most nine distinct ways to get a sum of <math>10</math>, which are possible whenever <math>a,b\geq{9}</math>. To achieve exactly eight ways, <math>b</math> must have <math>8</math> faces, and <math>a\geq9</math>. Let <math>n</math> be the number of ways to obtain a sum of <math>12</math>, then <math>\tfrac{n}{8a}=\tfrac{1}{12}\implies n=\tfrac{2}{3}a</math>. Since <math>b=8</math>, <math>n\leq8\implies a\leq{12}</math>. In addition to <math>3\mid{a}</math>, we only have to test <math>a=9,12</math>, of which both work. Taking the smaller one, our answer becomes <math>a+b=9+8=\boxed{\textbf{(B)17}}</math>. |
Revision as of 19:33, 11 February 2021
Solution
Suppose the dice have and faces, and WLOG . Since each die has at least faces, there will always be ways to sum to . As a result, there must be ways to sum to . There are at most nine distinct ways to get a sum of , which are possible whenever . To achieve exactly eight ways, must have faces, and . Let be the number of ways to obtain a sum of , then . Since , . In addition to , we only have to test , of which both work. Taking the smaller one, our answer becomes .