Difference between revisions of "2018 AMC 12B Problems/Problem 25"

(Solution 4)
(Solution 4)
Line 46: Line 46:
 
== Solution 4 ==
 
== Solution 4 ==
  
 +
<asy>
 +
unitsize(12);
 +
pair A = (0, 8/sqrt(3)), B = rotate(-120)*A, C = rotate(120)*A;
 +
real theta = 41.5;
 +
pair P1 = rotate(theta)*(2+2*sqrt(7/3), 0), P2 = rotate(-120)*P1, P3 = rotate(120)*P1;
 +
filldraw(P1--P2--P3--cycle, gray(0.9));
 +
 +
draw(Circle(A, 4));
 +
draw(Circle(B, 4));
 +
draw(Circle(C, 4));
 +
dot(P1);
 +
dot(P2);
 +
dot(P3);
 +
defaultpen(fontsize(10pt));
 +
label("$P_1$", P1, E*1.5);
 +
label("$P_2$", P2, SW*1.5);
 +
label("$P_3$", P3, N);
 +
label("$\omega_1$", A, W*17);
 +
label("$\omega_2$", B, E*17);
 +
label("$\omega_3$", C, W*17);
 +
 +
draw(Circle(A,2),red);
 +
pair X=foot(A,P1,P3);
 +
dot(X,blue);
 +
draw(A--X,blue);
 +
 +
label("$2\sqrt{7}$", X--P3);
 +
label("$2\sqrt{3}$",X--P1);
 +
label("$X$",X,dir(-80),blue);
 +
</asy>
  
 
First, note that because the <math>\angle P_1=\angle P_2=\angle P_3=\pi/3</math>, the arcs inside the shaded equilateral triangle are each <math>2\pi/3</math>. Also, the distances between the centers of any two of the <math>3</math> given circles are each <math>8</math>.
 
First, note that because the <math>\angle P_1=\angle P_2=\angle P_3=\pi/3</math>, the arcs inside the shaded equilateral triangle are each <math>2\pi/3</math>. Also, the distances between the centers of any two of the <math>3</math> given circles are each <math>8</math>.

Revision as of 19:23, 11 February 2021

Problem

Circles $\omega_1$, $\omega_2$, and $\omega_3$ each have radius $4$ and are placed in the plane so that each circle is externally tangent to the other two. Points $P_1$, $P_2$, and $P_3$ lie on $\omega_1$, $\omega_2$, and $\omega_3$ respectively such that $P_1P_2=P_2P_3=P_3P_1$ and line $P_iP_{i+1}$ is tangent to $\omega_i$ for each $i=1,2,3$, where $P_4 = P_1$. See the figure below. The area of $\triangle P_1P_2P_3$ can be written in the form $\sqrt{a}+\sqrt{b}$ for positive integers $a$ and $b$. What is $a+b$?

[asy] unitsize(12); pair A = (0, 8/sqrt(3)), B = rotate(-120)*A, C = rotate(120)*A; real theta = 41.5; pair P1 = rotate(theta)*(2+2*sqrt(7/3), 0), P2 = rotate(-120)*P1, P3 = rotate(120)*P1; filldraw(P1--P2--P3--cycle, gray(0.9)); draw(Circle(A, 4)); draw(Circle(B, 4)); draw(Circle(C, 4)); dot(P1); dot(P2); dot(P3); defaultpen(fontsize(10pt)); label("$P_1$", P1, E*1.5); label("$P_2$", P2, SW*1.5); label("$P_3$", P3, N); label("$\omega_1$", A, W*17); label("$\omega_2$", B, E*17); label("$\omega_3$", C, W*17); [/asy]

$\textbf{(A) }546\qquad\textbf{(B) }548\qquad\textbf{(C) }550\qquad\textbf{(D) }552\qquad\textbf{(E) }554$

Solution 1

Let $O_i$ be the center of circle $\omega_i$ for $i=1,2,3$, and let $K$ be the intersection of lines $O_1P_1$ and $O_2P_2$. Because $\angle P_1P_2P_3 = 60^\circ$, it follows that $\triangle P_2KP_1$ is a $30-60-90^\circ$ triangle. Let $d=P_1K$; then $P_2K = 2d$ and $P_1P_2 = \sqrt 3d$. The Law of Cosines in $\triangle O_1KO_2$ gives \[8^2 = (d+4)^2 + (2d-4)^2 - 2(d+4)(2d-4)\cos 60^\circ,\]which simplifies to $3d^2 - 12d - 16 = 0$. The positive solution is $d = 2 + \tfrac23\sqrt{21}$. Then $P_1P_2 = \sqrt 3 d = 2\sqrt 3 + 2\sqrt 7$, and the required area is \[\frac{\sqrt 3}4\cdot\left(2\sqrt 3 + 2\sqrt 7\right)^2 = 10\sqrt 3 + 6\sqrt 7 = \sqrt{300} + \sqrt{252}.\]The requested sum is $300 + 252 = \boxed{552}$.

Solution 2

Let $O_1$ and $O_2$ be the centers of $\omega_1$ and $\omega_2$ respectively and draw $O_1O_2$, $O_1P_1$, and $O_2P_2$. Note than $\angle{OP_1P_2}$ and $\angle{O_2P_2P_3}$ are both right. Furthermore, since $\triangle{P_1P_2P_3}$ is equilateral, $m\angle{P_1P_2P_3} = 60^\circ$ and $m\angle{O_2P_2P_1} = 30^\circ$. Mark $M$ as the base of the altitude from $O_2$ to $P_1P_2$. By special right triangles, $O_2M = 2$ and $P_2M = 2\sqrt{3}$. since $O_1O_2 = 8$ and $O_1P_1 = 4$, we can find find $P_1M = \sqrt{8^2 - (4 + 2)^2} = 2\sqrt{7}$. Thus, $P_1P_2 = P_1M + P_2M = 2\sqrt{3} + 2\sqrt{7}$. This makes $\left[P_1P_2P_3\right] = \frac{\left(2\sqrt{3} + 2\sqrt{7}\right)^2\sqrt{3}}{4} = 10\sqrt{3} + 6\sqrt{7} = \sqrt{252} + \sqrt{300}$. This makes the answer $252 + 300 = 552$. $\boxed{\textbf{D}.}$

Solution 3

Let $O_i$ be the center of circle $\omega_i$ for $i=1,2,3$. Let $X$ be the centroid of $\triangle{O_1O_2O_3}$, which also happens to be the centroid of $\triangle{P_1P_2P_3}$. Because $m\angle{O_1P_1P_2} = 90^\circ$ and $m\angle{O_1P_1X} = 30^\circ$, $m\angle{O_1P_1X} = 60^\circ$. $O_2M$ is $2/3$ the height of $\triangle{P_1P_2P_3}$, thus $O_2M$ is $8*\sqrt{3}/3$.

Applying cosine law on $\triangle{O_1P_1X}$, one finds that $P_1X = 2 + 2*\sqrt{21}/3$. Multiplying by $3/2$ to solve for the height of $\triangle{P_1P_2P_3}$, one gets $3 + \sqrt{21}$. Simply multiplying by $2/\sqrt{3}$ and then calculating the equilateral triangle's area, one would get the final result of $\sqrt{300} + \sqrt{252}$.

This makes the answer $252 + 300 = 552$. $\boxed{\textbf{D}.}$

~AlbeePach~

Solution 4

[asy] unitsize(12); pair A = (0, 8/sqrt(3)), B = rotate(-120)*A, C = rotate(120)*A; real theta = 41.5; pair P1 = rotate(theta)*(2+2*sqrt(7/3), 0), P2 = rotate(-120)*P1, P3 = rotate(120)*P1; filldraw(P1--P2--P3--cycle, gray(0.9));  draw(Circle(A, 4)); draw(Circle(B, 4)); draw(Circle(C, 4)); dot(P1); dot(P2); dot(P3); defaultpen(fontsize(10pt)); label("$P_1$", P1, E*1.5); label("$P_2$", P2, SW*1.5); label("$P_3$", P3, N); label("$\omega_1$", A, W*17); label("$\omega_2$", B, E*17); label("$\omega_3$", C, W*17);  draw(Circle(A,2),red); pair X=foot(A,P1,P3); dot(X,blue); draw(A--X,blue);  label("$2\sqrt{7}$", X--P3); label("$2\sqrt{3}$",X--P1); label("$X$",X,dir(-80),blue); [/asy]

First, note that because the $\angle P_1=\angle P_2=\angle P_3=\pi/3$, the arcs inside the shaded equilateral triangle are each $2\pi/3$. Also, the distances between the centers of any two of the $3$ given circles are each $8$. Draw the circle $\Gamma$ concentric with $\omega_1$ with radius $2$. Because the arc of $\omega_1$ inside said triangle is $2\pi/3$, $\Gamma$ touches $P_1P_3$, say at a point $X$. Thus, $P_1P_3$ is a common tangent of $\omega_3$ and $\Gamma$, and it can be seen from inspection of the given diagram that the line is an common internal tangent. The length of the common internal tangent segment $XP_3$ of $\Gamma$ and $\omega_3$ is then $\sqrt{8^2-(2+4)^2}=2\sqrt{7}$, and it is easily seen that $XP_1=4\sin \pi/3=2\sqrt{3}$. Because $P_1P_3=2(\sqrt{3}+\sqrt{7})$, the area of the shaded equilateral triangle is $\sqrt{3}(\sqrt{3}+\sqrt{7})^2=10\sqrt{3}+6\sqrt{7}$. We get $\sqrt{300}+\sqrt{252}\Rightarrow\boxed{\textbf{(D) }552}.$


~crazyeyemoody907

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png