Difference between revisions of "2006 AMC 12A Problems/Problem 14"

m (whoops)
Line 5: Line 5:
 
<math> \mathrm{(A) \ } $5\qquad \mathrm{(B) \ } $10\qquad \mathrm{(C) \ } $30\qquad \mathrm{(D) \ } $90\qquad \mathrm{(E) \ }  $210</math>
 
<math> \mathrm{(A) \ } $5\qquad \mathrm{(B) \ } $10\qquad \mathrm{(C) \ } $30\qquad \mathrm{(D) \ } $90\qquad \mathrm{(E) \ }  $210</math>
  
== Solution ==
 
 
== Solution ==
 
== Solution ==
 
The problem can be restated as an equation of the form <math>300p + 210g = x</math>, where <math>p</math> is the number of pigs, <math>g</math> is the number of goats, and <math>x</math> is the positive debt. The problem asks us to find the lowest ''x'' possible. ''p'' and ''g'' must be [[integer]]s, which makes the equation a [[Diophantine equation]].  The [[Euclidean algorithm]] tells us that there are integer solutions to the Diophantine equation <math>am + bn = c</math>, where <math>c</math> is the [[greatest common divisor]] of <math>a</math> and <math>b</math>, and no solutions for any smaller <math>c</math>. Therefore, the answer is the greatest common divisor of 300 and 210, which is 30, <math>\mathrm{(C) \ }</math>
 
The problem can be restated as an equation of the form <math>300p + 210g = x</math>, where <math>p</math> is the number of pigs, <math>g</math> is the number of goats, and <math>x</math> is the positive debt. The problem asks us to find the lowest ''x'' possible. ''p'' and ''g'' must be [[integer]]s, which makes the equation a [[Diophantine equation]].  The [[Euclidean algorithm]] tells us that there are integer solutions to the Diophantine equation <math>am + bn = c</math>, where <math>c</math> is the [[greatest common divisor]] of <math>a</math> and <math>b</math>, and no solutions for any smaller <math>c</math>. Therefore, the answer is the greatest common divisor of 300 and 210, which is 30, <math>\mathrm{(C) \ }</math>
 
  
 
Alternatively, note that <math>300p + 210g = 30(10p + 7g)</math> is divisible by 30 no matter what <math>p</math> and <math>g</math> are, so our answer must be divisible by 30.  In addition, three goats minus two pigs give us <math>630 - 600 = 30</math> exactly.  Since our theoretical best can be achived, it must really be the best, and the answer is <math>\mathrm{(C) \ }</math>.
 
Alternatively, note that <math>300p + 210g = 30(10p + 7g)</math> is divisible by 30 no matter what <math>p</math> and <math>g</math> are, so our answer must be divisible by 30.  In addition, three goats minus two pigs give us <math>630 - 600 = 30</math> exactly.  Since our theoretical best can be achived, it must really be the best, and the answer is <math>\mathrm{(C) \ }</math>.
Line 15: Line 13:
 
== See also ==
 
== See also ==
 
* [[2006 AMC 12A Problems]]
 
* [[2006 AMC 12A Problems]]
 +
*[[2006 AMC 10A Problems/Problem 22]]
  
 
{{AMC12 box|year=2006|ab=A|num-b=13|num-a=15}}
 
{{AMC12 box|year=2006|ab=A|num-b=13|num-a=15}}
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]

Revision as of 19:41, 11 April 2007

Problem

Two farmers agree that pigs are worth $300$ dollars and that goats are worth $210$ dollars. When one farmer owes the other money, he pays the debt in pigs or goats, with "change" received in the form of goats or pigs as necessary. (For example, a $390$ dollar debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way?

$\mathrm{(A) \ } $5\qquad \mathrm{(B) \ } $10\qquad \mathrm{(C) \ } $30\qquad \mathrm{(D) \ } $90\qquad \mathrm{(E) \ } $210$ (Error compiling LaTeX. Unknown error_msg)

Solution

The problem can be restated as an equation of the form $300p + 210g = x$, where $p$ is the number of pigs, $g$ is the number of goats, and $x$ is the positive debt. The problem asks us to find the lowest x possible. p and g must be integers, which makes the equation a Diophantine equation. The Euclidean algorithm tells us that there are integer solutions to the Diophantine equation $am + bn = c$, where $c$ is the greatest common divisor of $a$ and $b$, and no solutions for any smaller $c$. Therefore, the answer is the greatest common divisor of 300 and 210, which is 30, $\mathrm{(C) \ }$

Alternatively, note that $300p + 210g = 30(10p + 7g)$ is divisible by 30 no matter what $p$ and $g$ are, so our answer must be divisible by 30. In addition, three goats minus two pigs give us $630 - 600 = 30$ exactly. Since our theoretical best can be achived, it must really be the best, and the answer is $\mathrm{(C) \ }$. debt that can be resolved.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions