Difference between revisions of "2021 AMC 12A Problems/Problem 8"

Line 5: Line 5:
  
 
==Solution==
 
==Solution==
{{solution}}
+
Making a small chart, we have
 +
<math></math>\begin{center}\begin{tabular}{c|c|c|c|c|c|c|c|c|c}
 +
<math>D_0</math>&<math>D_1</math>&<math>D_2</math>&<math>D_3</math>&<math>D_4</math>&<math>D_5</math>&<math>D_6</math>&<math>D_7</math>&<math>D_8</math>&<math>D_9</math>\\\hline
 +
0&0&1&1&1&2&3&4&6&9\\\hline
 +
E&E&O&O&O&E&O&E&E&O
 +
\end{tabular}\end{center}<math></math>
 +
This starts repeating every 7 terms, so <math>D_{2021}=D_5=</math> E, <math>D_{2022}=D_6=</math> O, and <math>D_{2023}=D_7=</math> E. Thus, the answer is \boxed{C) \text{(E, O, E)}}
 +
~JHawk0224
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2021|ab=A|num-b=7|num-a=9}}
 
{{AMC12 box|year=2021|ab=A|num-b=7|num-a=9}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:30, 11 February 2021

Problem

A sequence of numbers is defined by $D_0=0,D_0=1,D_2=1$ and $D_n=D_{n-1}+D_{n-3}$ for $n\ge 3$. What are the parities (evenness or oddness) of the triple of numbers $(D_{2021},D_{2022},D_{2023})$, where $E$ denotes even and $O$ denotes odd?

$\textbf{(A) }(O,E,O) \qquad \textbf{(B) }(E,E,O) \qquad \textbf{(C) }(E,O,E) \qquad \textbf{(D) }(O,O,E) \qquad \textbf{(E) }(O,O,O)$

Solution

Making a small chart, we have $$ (Error compiling LaTeX. Unknown error_msg)\begin{center}\begin{tabular}{c|c|c|c|c|c|c|c|c|c} $D_0$&$D_1$&$D_2$&$D_3$&$D_4$&$D_5$&$D_6$&$D_7$&$D_8$&$D_9$\\\hline 0&0&1&1&1&2&3&4&6&9\\\hline E&E&O&O&O&E&O&E&E&O \end{tabular}\end{center}$$ (Error compiling LaTeX. Unknown error_msg) This starts repeating every 7 terms, so $D_{2021}=D_5=$ E, $D_{2022}=D_6=$ O, and $D_{2023}=D_7=$ E. Thus, the answer is \boxed{C) \text{(E, O, E)}} ~JHawk0224

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png