Difference between revisions of "2021 AMC 12A Problems/Problem 14"

Line 2: Line 2:
 
What is the value of<cmath>\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?</cmath><math>\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2,200\qquad \textbf{(E) }21,000</math>
 
What is the value of<cmath>\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?</cmath><math>\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2,200\qquad \textbf{(E) }21,000</math>
  
==Solution==
+
==Video Solution by Punxsutawney Phil==
{{solution}}
+
https://youtube.com/watch?v=FD9BE7hpRvg&t=322s
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2021|ab=A|num-b=13|num-a=15}}
 
{{AMC12 box|year=2021|ab=A|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:17, 11 February 2021

Problem

What is the value of\[\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?\]$\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2,200\qquad \textbf{(E) }21,000$

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=FD9BE7hpRvg&t=322s

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png