Difference between revisions of "2016 AMC 10B Problems/Problem 24"
Mathwizard10 (talk | contribs) m (→Solution 2) |
(→Solution 2 (Brute Force)) |
||
Line 24: | Line 24: | ||
Adding the two cases together, we find the answer to be <math>8+9=</math> <math>\boxed{\textbf{(D) }17}</math>. | Adding the two cases together, we find the answer to be <math>8+9=</math> <math>\boxed{\textbf{(D) }17}</math>. | ||
− | ==Solution 2 (Brute Force)== | + | ==Solution 2 (Brute Force, when you have lots of time)== |
Looking at the answer options, all the numbers are pretty small so it is easy to make a list. | Looking at the answer options, all the numbers are pretty small so it is easy to make a list. | ||
Revision as of 13:03, 27 January 2021
Contents
Problem
How many four-digit integers , with , have the property that the three two-digit integers form an increasing arithmetic sequence? One such number is , where , , , and .
Solution 1
The numbers are and . Note that only can be zero, the numbers , , and cannot start with a zero, and .
To form the sequence, we need . This can be rearranged as . Notice that since the left-hand side is a multiple of , the right-hand side can only be or . (A value of would contradict .) Therefore we have two cases: and .
Case 1
If , then , so . This gives . If , then , so . This gives . If , then , so , giving . There is no solution for . Added together, this gives us answers for Case 1.
Case 2
This means that the digits themselves are in an arithmetic sequence. This gives us answers, Adding the two cases together, we find the answer to be .
Solution 2 (Brute Force, when you have lots of time)
Looking at the answer options, all the numbers are pretty small so it is easy to make a list.
Counting all the cases we get our answer of which is -srisainandan6
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.