Difference between revisions of "2018 AMC 12B Problems/Problem 7"
Pi is 3.14 (talk | contribs) (→Solution 2) |
MRENTHUSIASM (talk | contribs) (Reformatted answer choices and made the sols more professional.) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | What is the value of | + | What is the value of <cmath> \log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27? </cmath> |
− | |||
− | <cmath> \log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27? </cmath> | ||
<math>\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10 </math> | <math>\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10 </math> | ||
− | + | == Solution 1 == | |
− | + | From the Change of Base Formula, we have <cmath>\frac{\prod_{i=3}^{13} \log (2i+1)}{\prod_{i=1}^{11}\log (2i+1)} = \frac{\log 25 \cdot \log 27}{\log 3 \cdot \log 5} = \log_327\cdot \log_525 = 3\cdot2 = \boxed{\textbf{(C) } 6}.</cmath> | |
− | Change of | ||
− | + | == Solution 2 == | |
− | Using the chain rule | + | Using the chain rule of logarithms <math>\log _{a} b \cdot \log _{b} c = \log _{a} c,</math> we get |
+ | <cmath>\begin{align*} | ||
+ | \log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27 &= (\log _{3} 7 \cdot \log _{7} 11 \cdots \log _{23} 27) \cdot (\log _{5} 9 \cdot \log _{9} 13 \cdots \log _{21} 25) \\ | ||
+ | &= \log _{3} 27 \cdot \log _{5} 25 \\ | ||
+ | &= 3 \cdot 2 \\ | ||
+ | &= \boxed{\textbf{(C) } 6}. | ||
+ | \end{align*}</cmath> | ||
== Video Solution == | == Video Solution == |
Revision as of 21:03, 18 September 2021
Problem
What is the value of
Solution 1
From the Change of Base Formula, we have
Solution 2
Using the chain rule of logarithms we get
Video Solution
https://youtu.be/RdIIEhsbZKw?t=605
~ pi_is_3.14
See Also
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.