Difference between revisions of "2007 AMC 10A Problems/Problem 4"

(Problem: The previous problem was the actual problem)
(Problem)
 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
The larger of two consecutive odd integers is three times the smaller. What is their sum?
 
The larger of two consecutive odd integers is three times the smaller. What is their sum?
 +
 +
<math>\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20</math>
  
 
== Solution ==
 
== Solution ==

Latest revision as of 23:58, 27 April 2021

Problem

The larger of two consecutive odd integers is three times the smaller. What is their sum?

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Solution

Let the two consecutive odd integers be $a$, $a+2$. Then $a+2 = 3a$, so $a = 1$ and their sum is $4\ \mathrm{(A)}$.

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png