Difference between revisions of "2021 AMC 10A Problems/Problem 20"
Alancenwang (talk | contribs) (Created page with "The AMC 10 has not started yet.") |
|||
Line 1: | Line 1: | ||
− | The | + | ==Problem== |
+ | In how many ways can the sequence <math>1,2,3,4,5</math> be rearranged so that no three consecutive terms are increasing and no three consecutive terms are decreasing? | ||
+ | <math>\textbf{(A)} ~10\qquad\textbf{(B)} ~18\qquad\textbf{(C)} ~24 \qquad\textbf{(D)} ~32 \qquad\textbf{(E)} ~44</math> | ||
+ | |||
+ | ==Solution (bashing)== | ||
+ | We write out the 120 cases. | ||
+ | [hide=The Cases] | ||
+ | <math>1,2,3,4,5</math> | ||
+ | <math>1,2,3,5,4</math> | ||
+ | <math>1,2,4,3,5</math> | ||
+ | <math>1,2,4,5,3</math> | ||
+ | <math>1,2,5,3,4</math> | ||
+ | <math>1,2,5,4,3</math> | ||
+ | <math>1,3,2,4,5</math> | ||
+ | <math>1,3,2,5,4</math> | ||
+ | <math>1,3,4,2,5</math> | ||
+ | <math>1,3,4,5,2</math> | ||
+ | <math>1,3,5,2,4</math> | ||
+ | <math>1,3,5,4,2</math> | ||
+ | <math>1,4,2,3,5</math> | ||
+ | <math>1,4,2,5,3</math> | ||
+ | <math>1,4,3,2,5</math> | ||
+ | <math>1,4,3,5,2</math> | ||
+ | <math>1,4,5,2,3</math> | ||
+ | <math>1,4,5,3,2</math> | ||
+ | <math>1,5,2,3,4</math> | ||
+ | <math>1,5,2,4,3</math> | ||
+ | <math>1,5,3,2,4</math> | ||
+ | <math>1,5,3,4,2</math> | ||
+ | <math>1,5,4,2,3</math> | ||
+ | <math>1,5,4,3,2</math> | ||
+ | <math>2,1,3,4,5</math> | ||
+ | <math>2,1,3,5,4</math> | ||
+ | <math>2,1,4,3,5</math> | ||
+ | <math>2,1,4,5,3</math> | ||
+ | <math>2,1,5,3,4</math> | ||
+ | <math>2,1,5,4,3</math> | ||
+ | <math>2,3,1,4,5</math> | ||
+ | <math>2,3,1,5,4</math> | ||
+ | <math>2,3,4,1,5</math> | ||
+ | <math>2,3,4,5,1</math> | ||
+ | <math>2,3,5,1,4</math> | ||
+ | <math>2,3,5,4,1</math> | ||
+ | <math>2,4,1,3,5</math> | ||
+ | <math>2,4,1,5,3</math> | ||
+ | <math>2,4,3,1,5</math> | ||
+ | <math>2,4,3,5,1</math> | ||
+ | <math>2,4,5,1,3</math> | ||
+ | <math>2,4,5,3,1</math> | ||
+ | <math>2,5,1,3,4</math> | ||
+ | <math>2,5,1,4,3</math> | ||
+ | <math>2,5,3,1,4</math> | ||
+ | <math>2,5,3,4,1</math> | ||
+ | <math>2,5,4,1,3</math> | ||
+ | <math>2,5,4,3,1</math> | ||
+ | <math>3,1,2,4,5</math> | ||
+ | <math>3,1,2,5,4</math> | ||
+ | <math>3,1,4,2,5</math> | ||
+ | <math>3,1,4,5,2</math> | ||
+ | <math>3,1,5,2,4</math> | ||
+ | <math>3,1,5,4,2</math> | ||
+ | <math>3,2,1,4,5</math> | ||
+ | <math>3,2,1,5,4</math> | ||
+ | <math>3,2,4,1,5</math> | ||
+ | <math>3,2,4,5,1</math> | ||
+ | <math>3,2,5,1,4</math> | ||
+ | <math>3,2,5,4,1</math> | ||
+ | <math>3,4,1,2,5</math> | ||
+ | <math>3,4,1,5,2</math> | ||
+ | <math>3,4,2,1,5</math> | ||
+ | <math>3,4,2,5,1</math> | ||
+ | <math>3,4,5,1,2</math> | ||
+ | <math>3,4,5,2,1</math> | ||
+ | <math>3,5,1,2,4</math> | ||
+ | <math>3,5,1,4,2</math> | ||
+ | <math>3,5,2,1,4</math> | ||
+ | <math>3,5,2,4,1</math> | ||
+ | <math>3,5,4,1,2</math> | ||
+ | <math>3,5,4,2,1</math> | ||
+ | <math>4,1,2,3,5</math> | ||
+ | <math>4,1,2,5,3</math> | ||
+ | <math>4,1,3,2,5</math> | ||
+ | <math>4,1,3,5,2</math> | ||
+ | <math>4,1,5,2,3</math> | ||
+ | <math>4,1,5,3,2</math> | ||
+ | <math>4,2,1,3,5</math> | ||
+ | <math>4,2,1,5,3</math> | ||
+ | <math>4,2,3,1,5</math> | ||
+ | <math>4,2,3,5,1</math> | ||
+ | <math>4,2,5,1,3</math> | ||
+ | <math>4,2,5,3,1</math> | ||
+ | <math>4,3,1,2,5</math> | ||
+ | <math>4,3,1,5,2</math> | ||
+ | <math>4,3,2,1,5</math> | ||
+ | <math>4,3,2,5,1</math> | ||
+ | <math>4,3,5,1,2</math> | ||
+ | <math>4,3,5,2,1</math> | ||
+ | <math>4,5,1,2,3</math> | ||
+ | <math>4,5,1,3,2</math> | ||
+ | <math>4,5,2,1,3</math> | ||
+ | <math>4,5,2,3,1</math> | ||
+ | <math>4,5,3,1,2</math> | ||
+ | <math>4,5,3,2,1</math> | ||
+ | <math>5,1,2,3,4</math> | ||
+ | <math>5,1,2,4,3</math> | ||
+ | <math>5,1,3,2,4</math> | ||
+ | <math>5,1,3,4,2</math> | ||
+ | <math>5,1,4,2,3</math> | ||
+ | <math>5,1,4,3,2</math> | ||
+ | <math>5,2,1,3,4</math> | ||
+ | <math>5,2,1,4,3</math> | ||
+ | <math>5,2,3,1,4</math> | ||
+ | <math>5,2,3,4,1</math> | ||
+ | <math>5,2,4,1,3</math> | ||
+ | <math>5,2,4,3,1</math> | ||
+ | <math>5,3,1,2,4</math> | ||
+ | <math>5,3,1,4,2</math> | ||
+ | <math>5,3,2,1,4</math> | ||
+ | <math>5,3,2,4,1</math> | ||
+ | <math>5,3,4,1,2</math> | ||
+ | <math>5,3,4,2,1</math> | ||
+ | <math>5,4,1,2,3</math> | ||
+ | <math>5,4,1,3,2</math> | ||
+ | <math>5,4,2,1,3</math> | ||
+ | <math>5,4,2,3,1</math> | ||
+ | <math>5,4,3,1,2</math> | ||
+ | <math>5,4,3,2,1</math> | ||
+ | [/hide] | ||
+ | Some quick work gets us <math>\boxed{\text{D: }32}</math> permutations that work. ~contactbibliophile |
Revision as of 15:08, 11 February 2021
Problem
In how many ways can the sequence be rearranged so that no three consecutive terms are increasing and no three consecutive terms are decreasing?
Solution (bashing)
We write out the 120 cases. [hide=The Cases] [/hide] Some quick work gets us permutations that work. ~contactbibliophile