Difference between revisions of "2011 AMC 10A Problems/Problem 16"

Line 27: Line 27:
  
 
~coolmath_2018
 
~coolmath_2018
 +
 +
==Video Solution==
 +
https://youtu.be/ow2axpUP53c
 +
 +
~savannahsolver
 +
 
== See Also ==
 
== See Also ==
  

Revision as of 21:40, 28 December 2020

Problem 16

Which of the following is equal to $\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}$?

$\text{(A)}\,3\sqrt2 \qquad\text{(B)}\,2\sqrt6 \qquad\text{(C)}\,\frac{7\sqrt2}{2} \qquad\text{(D)}\,3\sqrt3 \qquad\text{(E)}\,6$

Solution 1 (Bash)

We find the answer by squaring, then square rooting the expression.

\begin{align*} &\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\\\ = \ &\sqrt{\left(\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\right)^2}\\\\ = \ &\sqrt{9-6\sqrt{2}+2\sqrt{(9-6\sqrt{2})(9+6\sqrt{2})}+9+6\sqrt{2}}\\\\ = \ &\sqrt{18+2\sqrt{(9-6\sqrt{2})(9+6\sqrt{2})}}\\\\ = \ &\sqrt{18+2\sqrt{9^2-(6\sqrt{2})^2}}\\\\ = \ &\sqrt{18+2\sqrt{81-72}}\\\\ = \ &\sqrt{18+2\sqrt{9}}\\\\ = \ &\sqrt{18+6}\\\\= \ &\sqrt{24}\\\\ = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}. \end{align*}

Solution 2 (FASTER!)

We can change the insides of the square root into a perfect square and then simplify.

\[\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\] \[= \sqrt{6-6\sqrt{2}+3}+\sqrt{6+6\sqrt{2}+3}\] \[= \sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}\] \[= \sqrt{6}-\sqrt{3}+\sqrt{6}+\sqrt{3}\] \[= \boxed{B) 2\sqrt{6}}\]

Solution 3 (FASTEST)

Square roots remind us of squares. So lets try to make $9 - 6\sqrt{2} = (a-b)^2$. Doing a little experimentation we find that \[9 - 6\sqrt{2} = (\sqrt{6} - \sqrt{3})^2.\] Similarly since $9 + 6\sqrt{2} = (a+b)^2$ we know that \[9 + 6\sqrt{2} = (\sqrt{6} + \sqrt{3})^2.\]

We want to find $\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}$. Using what we found above we know \[\sqrt{9 -6\sqrt{2}}+\sqrt{9+6\sqrt{2}} = (\sqrt{6} - \sqrt{3}) + (\sqrt{6} + \sqrt{3}) = 2\sqrt{6}.\] This is nothing but $\boxed{B) 2\sqrt{6}}$.

~coolmath_2018

Video Solution

https://youtu.be/ow2axpUP53c

~savannahsolver

See Also

2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png