Difference between revisions of "2010 AMC 12B Problems/Problem 23"

m
Line 3: Line 3:
  
 
<math>\textbf{(A)}\ -100 \qquad \textbf{(B)}\ -82 \qquad \textbf{(C)}\ -73 \qquad \textbf{(D)}\ -64 \qquad \textbf{(E)}\ 0</math>
 
<math>\textbf{(A)}\ -100 \qquad \textbf{(B)}\ -82 \qquad \textbf{(C)}\ -73 \qquad \textbf{(D)}\ -64 \qquad \textbf{(E)}\ 0</math>
==Solution==
+
 
 +
==Solution 1==
 
<math> P(x) = (x - a)^2 - b, Q(x) = (x - c)^2 - d</math>. Notice that <math> P(x)</math> has roots <math> a\pm \sqrt {b}</math>, so that the roots of <math> P(Q(x))</math> are the roots of <math> Q(x) = a + \sqrt {b}, a - \sqrt {b}</math>. For each individual equation, the sum of the roots will be <math> 2c</math> (symmetry or Vieta's). Thus, we have <math> 4c = - 23 - 21 - 17 - 15</math>, or <math> c = - 19</math>. Doing something similar for <math> Q(P(x))</math> gives us <math> a = - 54</math>.
 
<math> P(x) = (x - a)^2 - b, Q(x) = (x - c)^2 - d</math>. Notice that <math> P(x)</math> has roots <math> a\pm \sqrt {b}</math>, so that the roots of <math> P(Q(x))</math> are the roots of <math> Q(x) = a + \sqrt {b}, a - \sqrt {b}</math>. For each individual equation, the sum of the roots will be <math> 2c</math> (symmetry or Vieta's). Thus, we have <math> 4c = - 23 - 21 - 17 - 15</math>, or <math> c = - 19</math>. Doing something similar for <math> Q(P(x))</math> gives us <math> a = - 54</math>.
 
We now have <math> P(x) = (x + 54)^2 - b, Q(x) = (x + 19)^2 - d</math>. Since <math> Q</math> is monic, the roots of <math> Q(x) = a + \sqrt {b}</math> are "farther" from the axis of symmetry than the roots of <math> Q(x) = a - \sqrt {b}</math>. Thus, we have <math> Q( - 23) = - 54 + \sqrt {b}, Q( -21) =- 54 - \sqrt {b}</math>, or <math> 16 - d = - 54 + \sqrt {b}, 4 - d = - 54 - \sqrt {b}</math>. Adding these gives us <math> 20 - 2d = - 108</math>, or <math> d = 64</math>. Plugging this into <math> 16 - d = - 54 + \sqrt {b}</math>, we get <math> b = 36</math>.
 
We now have <math> P(x) = (x + 54)^2 - b, Q(x) = (x + 19)^2 - d</math>. Since <math> Q</math> is monic, the roots of <math> Q(x) = a + \sqrt {b}</math> are "farther" from the axis of symmetry than the roots of <math> Q(x) = a - \sqrt {b}</math>. Thus, we have <math> Q( - 23) = - 54 + \sqrt {b}, Q( -21) =- 54 - \sqrt {b}</math>, or <math> 16 - d = - 54 + \sqrt {b}, 4 - d = - 54 - \sqrt {b}</math>. Adding these gives us <math> 20 - 2d = - 108</math>, or <math> d = 64</math>. Plugging this into <math> 16 - d = - 54 + \sqrt {b}</math>, we get <math> b = 36</math>.
Line 9: Line 10:
  
  
== Bash ==
+
== Solution 2 (Bash) ==
 
Let <math>P(x) = x^2 + Bx + C</math> and <math>Q(x) = x^2 + Ex + F</math>.
 
Let <math>P(x) = x^2 + Bx + C</math> and <math>Q(x) = x^2 + Ex + F</math>.
  
Line 53: Line 54:
 
The sum of these minimums is <math>2880 +297 - 54^2 - 19^2 = \boxed{-100}</math>. -srisainandan6
 
The sum of these minimums is <math>2880 +297 - 54^2 - 19^2 = \boxed{-100}</math>. -srisainandan6
  
== Mild Bash ==
+
== Solution 3 (Mild Bash) ==
 
Let <math>P(x) = x^2 - (a+b)x + ab</math> and <math>Q(x) = x^2 - (c+d)x + cd</math>. Notice that the roots of <math>P(x)</math> are <math>a,b</math> and the roots of <math>Q(x)</math> are <math>c,d.</math> Then we get:
 
Let <math>P(x) = x^2 - (a+b)x + ab</math> and <math>Q(x) = x^2 - (c+d)x + cd</math>. Notice that the roots of <math>P(x)</math> are <math>a,b</math> and the roots of <math>Q(x)</math> are <math>c,d.</math> Then we get:
  

Revision as of 22:22, 23 December 2020

Problem 23

Monic quadratic polynomial $P(x)$ and $Q(x)$ have the property that $P(Q(x))$ has zeros at $x=-23, -21, -17,$ and $-15$, and $Q(P(x))$ has zeros at $x=-59,-57,-51$ and $-49$. What is the sum of the minimum values of $P(x)$ and $Q(x)$?

$\textbf{(A)}\ -100 \qquad \textbf{(B)}\ -82 \qquad \textbf{(C)}\ -73 \qquad \textbf{(D)}\ -64 \qquad \textbf{(E)}\ 0$

Solution 1

$P(x) = (x - a)^2 - b, Q(x) = (x - c)^2 - d$. Notice that $P(x)$ has roots $a\pm \sqrt {b}$, so that the roots of $P(Q(x))$ are the roots of $Q(x) = a + \sqrt {b}, a - \sqrt {b}$. For each individual equation, the sum of the roots will be $2c$ (symmetry or Vieta's). Thus, we have $4c = - 23 - 21 - 17 - 15$, or $c = - 19$. Doing something similar for $Q(P(x))$ gives us $a = - 54$. We now have $P(x) = (x + 54)^2 - b, Q(x) = (x + 19)^2 - d$. Since $Q$ is monic, the roots of $Q(x) = a + \sqrt {b}$ are "farther" from the axis of symmetry than the roots of $Q(x) = a - \sqrt {b}$. Thus, we have $Q( - 23) = - 54 + \sqrt {b}, Q( -21) =- 54 - \sqrt {b}$, or $16 - d = - 54 + \sqrt {b}, 4 - d = - 54 - \sqrt {b}$. Adding these gives us $20 - 2d = - 108$, or $d = 64$. Plugging this into $16 - d = - 54 + \sqrt {b}$, we get $b = 36$. The minimum value of $P(x)$ is $- b$, and the minimum value of $Q(x)$ is $- d$. Thus, our answer is $- (b + d) = - 100$, or answer $\boxed{\textbf{(A)}}$.


Solution 2 (Bash)

Let $P(x) = x^2 + Bx + C$ and $Q(x) = x^2 + Ex + F$.

Then $P(Q(x))$ is $(x^2 + Ex + F)^2 + B(x^2 + Ex + F) + C$, which simplifies to:

$P(Q(x)) = x^4 + 2Ex^3 + (E^2 + 2F + B)x^2 + (2EF + BE)x + (F^2 + BF + C)$

We can find $Q(P(x))$ by simply doing $B\Leftrightarrow E$ and $C \Leftrightarrow F$ to get:

$Q(P(x)) = x^4 + 2Bx^3 + (B^2 + 2C + E)x^2 + (2BC + BE)x + (C^2 + EC + F)$

The sum of the zeros of $P(Q(x))$ is $-76$. From Vieta, the sum is $-2E$. Therefore, $E = 38$.

The sum of the zeros of $Q(P(x))$ is $-216$. From Vieta, the sum is $-2B$. Therefore, $B = 108$.

Plugging in, we get:

$P(Q(x)) = x^4 + 76x^3 + (1552 + 2F)x^2 + (76F + 4104)x + (F^2 + 108F + C)$ $Q(P(x)) = x^4 + 216x^3 + (11702 + 2C)x^2 + (216C + 4104)x + (C^2 + 38C + F)$

Let's tackle the $x^2$ coefficients, which is the sum of the six double-products possible. Since $23 \cdot (21 + 17 + 15) + 21 \cdot (17 + 15) + 17 \cdot 15$ gives the sum of these six double products of the roots of $P(Q(x))$, we have:

$1552 + 2F = 23 \cdot (21 + 17 + 15) + 21 \cdot (17 + 15) + 17 \cdot 15$

$1552 + 2F = 2146$

$F = 297$

Similarly with $Q(P(x))$, we get:

$11702 + 2C = 59(57 + 51 + 49) + 57(51 + 49) + 51(49)$

$11702 + 2C = 17462$

$C = 2880$

Thus, our polynomials are $P(x) = x^2 + 108x + 2880$ and $Q(x) = x^2 + 38x + 297$.

The minimum value of $P(x)$ happens at $x = -\frac{108}{2} = -54$, and is $54^2 - 108 \cdot 54 + 2880 = 2880 - 54^2$.

The minimum value of $Q(x)$ happens at $x = -\frac{38}{2} = -19$, and is $19^2 - 38 \cdot 19 + 297 = 297 - 19^2$.

The sum of these minimums is $2880 +297 - 54^2 - 19^2 = \boxed{-100}$. -srisainandan6

Solution 3 (Mild Bash)

Let $P(x) = x^2 - (a+b)x + ab$ and $Q(x) = x^2 - (c+d)x + cd$. Notice that the roots of $P(x)$ are $a,b$ and the roots of $Q(x)$ are $c,d.$ Then we get:

\begin{align*} P(Q(x)) &= a, b \\ x^2 - (c+d)x + cd &= a, b \end{align*} The two possible equations are then $x^2 - (c+d)x + cd-a=0$ and $x^2 - (c+d)x + cd-b=0$. The solutions are $-23, -21, -17, -15$. From Vieta's we know that the total sum $2(c+d) = -76 \implies c+d = -38$ so the roots are paired $-23, -15$ and $-21, -17$. Let $cd - a = 23*15$ and $cd - b = 21*17$.

We can similarly get that $ab - c = 59*49$ and $ab - d = 57*51$, and $a+b = -108$. Add the first two equations to get \[2cd - (a+b) = 23*15 + 21*17 \implies cd = \frac{23*15+21*17 - 108}{2} = 297.\] This means $Q(x) = x^2 + 38x + 297$.

Once more, we can similarly obtain \[ab = \frac{59*49 + 57*51 - 38}{2} = 2880.\] Therefore $P(x) = x^2 + 108x + 2880$.

Now we can find the minimums to be \[19^2 - 19*38 + 297 = -64\] and \[54^2 - 54*108 + 2880 = -36.\] Summing, the answer is $\boxed{\textbf{(A)} -100}.$

~Leonard_my_dude~

See Also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png