Difference between revisions of "2016 AMC 10B Problems/Problem 12"

(Video Solution)
Line 15: Line 15:
  
 
~savannahsolver
 
~savannahsolver
 +
 +
== Video Solution ==
 +
https://youtu.be/IRyWOZQMTV8?t=933
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2016|ab=B|num-b=11|num-a=13}}
 
{{AMC10 box|year=2016|ab=B|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:49, 17 January 2021

Problem

Two different numbers are selected at random from $\{1, 2, 3, 4, 5\}$ and multiplied together. What is the probability that the product is even?

$\textbf{(A)}\ 0.2\qquad\textbf{(B)}\ 0.4\qquad\textbf{(C)}\ 0.5\qquad\textbf{(D)}\ 0.7\qquad\textbf{(E)}\ 0.8$

Solution

The product will be even if at least one selected number is even, and odd if none are. Using complementary counting, the chance that both numbers are odd is $\frac{\tbinom32}{\tbinom52}=\frac3{10}$, so the answer is $1-0.3$ which is $\textbf{(D)}\ 0.7$.

Solution 2

There are 2 cases to get an even number. Case 1: even*even and Case 2: odd*even. Thus, to get an even*even, you get (2C2)/(5C2)= 1/10. And to get odd*even, you get [(3C1)*(2C1)]/(5C2) = 6/10. 1/10 + 6/10 yields 0.7 solution D

Video Solution

https://youtu.be/tUpKpGmOwDQ

~savannahsolver

Video Solution

https://youtu.be/IRyWOZQMTV8?t=933

~ pi_is_3.14

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png