Difference between revisions of "2006 AIME I Problems/Problem 1"

m (See also)
m (See also: box)
Line 29: Line 29:
  
 
== See also ==
 
== See also ==
* [[2006 AIME I Problems/Problem 2 | Next problem]]
+
{{AIME box|year=2006|n=I|before=First Question|num-a=2}}
* [[2006 AIME I Problems]]
 
* [[Geometry]]
 
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]

Revision as of 20:21, 11 March 2007

Problem

In quadrilateral $ABCD , \angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD},  AB=18, BC=21,$ and $CD=14.$ Find the perimeter of $ABCD.$

Solution

From the problem statement, we construct the following diagram:

Aime06i.1.PNG

Using the Pythagorean Theorem:

$(AD)^2 = (AC)^2 + (CD)^2$
$(AC)^2 = (AB)^2 + (BC)^2$

Substituting $(AB)^2 + (BC)^2$ for $(AC)^2$:

$(AD)^2 = (AB)^2 + (BC)^2 + (CD)^2$

Plugging in the given information:

$(AD)^2 = (18)^2 + (21)^2 + (14)^2$
$(AD)^2 = 961$
$(AD)= 31$

So the perimeter is: $18+21+14+31=84$

The answer is 084.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions