Difference between revisions of "1997 AIME Problems/Problem 14"
m (I thought that was De Moivre's Theorem) |
m (→Solution: I probably just overcomplicated things ...) |
||
Line 10: | Line 10: | ||
Now, let <math>\displaystyle v</math> be the root corresponding to <math>\displaystyle \theta=\frac{2\pi m}{1997}</math>, and let <math>\displaystyle w</math> be the root corresponding to <math>\displaystyle \theta=\frac{2\pi n}{1997}</math>. The magnitude of <math>\displaystyle v+w</math> is therefore: | Now, let <math>\displaystyle v</math> be the root corresponding to <math>\displaystyle \theta=\frac{2\pi m}{1997}</math>, and let <math>\displaystyle w</math> be the root corresponding to <math>\displaystyle \theta=\frac{2\pi n}{1997}</math>. The magnitude of <math>\displaystyle v+w</math> is therefore: | ||
+ | :<math>\sqrt{\left(\cos\left(\frac{2\pi m}{1997}\right) + \cos\left(\frac{2\pi n}{1997}\right)\right)^2 + \left(\sin\left(\frac{2\pi m}{1997}\right) + \sin\left(\frac{2\pi n}{1997}\right)\right)^2}</math> | ||
+ | :<math>=\sqrt{2 + 2\cos\left(\frac{2\pi m}{1997}\right)\cos\left(\frac{2\pi n}{1997}\right) + 2\sin\left(\frac{2\pi m}{1997}\right)\sin\left(\frac{2\pi n}{1997}\right)}</math> | ||
+ | |||
+ | We need <math>\cos (\frac{2\pi m}{1997})\cos (\frac{2\pi n}{1997}) + \sin (\frac{2\pi m}{1997})\sin (\frac{2\pi n}{1997}) \ge \frac{\sqrt{3}}{2}</math>. The [[Trigonometric identities|cosine difference identity]] simplifies that to <math>\cos\left(\frac{2\pi m}{1997} - \frac{2\pi n}{1997}\right) \ge \frac{\sqrt{3}}{2}</math>. Thus, <math>|m - n| \le \frac{\pi}{6} \cdot 2 \cdot \frac{1997}{2 \pi} = \frac{1997}{6}</math>. | ||
== See also == | == See also == |
Revision as of 20:37, 7 March 2007
Problem
Let and be distinct, randomly chosen roots of the equation . Let be the probability that , where and are relatively prime positive integers. Find .
Solution
By De Moivre's Theorem, we find that
Now, let be the root corresponding to , and let be the root corresponding to . The magnitude of is therefore:
We need . The cosine difference identity simplifies that to . Thus, .
See also
1997 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |