Difference between revisions of "1987 AIME Problems/Problem 6"
Mathgeek2006 (talk | contribs) m (→Solution) |
m (cat) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | [[Rectangle]] <math> | + | [[Rectangle]] <math>ABCD</math> is divided into four parts of equal [[area]] by five [[line segment | segments]] as shown in the figure, where <math>XY = YB + BC + CZ = ZW = WD + DA + AX</math>, and <math>PQ</math> is [[parallel]] to <math>AB</math>. Find the [[length]] of <math>AB</math> (in cm) if <math>BC = 19</math> cm and <math>PQ = 87</math> cm. |
[[Image:AIME_1987_Problem_6.png]] | [[Image:AIME_1987_Problem_6.png]] | ||
== Solution == | == Solution == | ||
− | Since <math>XY = WZ</math> and <math>PQ = PQ</math> and the [[area]]s of the [[trapezoid]]s <math> | + | Since <math>XY = WZ</math> and <math>PQ = PQ</math> and the [[area]]s of the [[trapezoid]]s <math>PQZW</math> and <math>PQYX</math> are the same, the heights of the trapezoids are the same. Thus both trapezoids have area <math>\frac{1}{2} \cdot \frac{19}{2}(XY + PQ) = \frac{19}{4}(XY + 87)</math>. This number is also equal to one quarter the area of the entire rectangle, which is <math>\frac{19\cdot AB}{4}</math>, so we have <math>AB = XY + 87</math>. |
In addition, we see that the [[perimeter]] of the rectangle is <math>2AB + 38 = XA + AD + DW + WZ + ZC + CB + BY + YX = 4XY</math>, so <math>AB + 19 = 2XY</math>. | In addition, we see that the [[perimeter]] of the rectangle is <math>2AB + 38 = XA + AD + DW + WZ + ZC + CB + BY + YX = 4XY</math>, so <math>AB + 19 = 2XY</math>. | ||
Line 11: | Line 11: | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=1987|num-b=5|num-a=7}} | |
− | + | [[Category:Intermediate Geometry Problems]] |
Revision as of 18:08, 23 October 2007
Problem
Rectangle is divided into four parts of equal area by five segments as shown in the figure, where , and is parallel to . Find the length of (in cm) if cm and cm.
Solution
Since and and the areas of the trapezoids and are the same, the heights of the trapezoids are the same. Thus both trapezoids have area . This number is also equal to one quarter the area of the entire rectangle, which is , so we have .
In addition, we see that the perimeter of the rectangle is , so .
Solving these two equations gives .
See also
1987 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |