Difference between revisions of "2020 AMC 8 Problems/Problem 7"

(Created page with "Problem 7 How many integers between <math>2020</math> and <math>2400</math> have four distinct digits arranged in increasing order? (For example, <math>2347</math> is one inte...")
 
Line 1: Line 1:
Problem 7
+
==Problem 7==
 
How many integers between <math>2020</math> and <math>2400</math> have four distinct digits arranged in increasing order? (For example, <math>2347</math> is one integer.)
 
How many integers between <math>2020</math> and <math>2400</math> have four distinct digits arranged in increasing order? (For example, <math>2347</math> is one integer.)
  
 
<math>\textbf{(A) }\text{9} \qquad \textbf{(B) }\text{10} \qquad \textbf{(C) }\text{15} \qquad \textbf{(D) }\text{21}\qquad \textbf{(E) }\text{28}</math>
 
<math>\textbf{(A) }\text{9} \qquad \textbf{(B) }\text{10} \qquad \textbf{(C) }\text{15} \qquad \textbf{(D) }\text{21}\qquad \textbf{(E) }\text{28}</math>
 +
==See also==
 +
{{AMC8 box|year=2020|num-b=6|num-a=8}}
 +
{{MAA Notice}}

Revision as of 00:23, 18 November 2020

Problem 7

How many integers between $2020$ and $2400$ have four distinct digits arranged in increasing order? (For example, $2347$ is one integer.)

$\textbf{(A) }\text{9} \qquad \textbf{(B) }\text{10} \qquad \textbf{(C) }\text{15} \qquad \textbf{(D) }\text{21}\qquad \textbf{(E) }\text{28}$

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png