Difference between revisions of "2017 AIME II Problems/Problem 15"
Icematrix2 (talk | contribs) |
m (→Solutions) |
||
Line 2: | Line 2: | ||
Tetrahedron <math>ABCD</math> has <math>AD=BC=28</math>, <math>AC=BD=44</math>, and <math>AB=CD=52</math>. For any point <math>X</math> in space, suppose <math>f(X)=AX+BX+CX+DX</math>. The least possible value of <math>f(X)</math> can be expressed as <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | Tetrahedron <math>ABCD</math> has <math>AD=BC=28</math>, <math>AC=BD=44</math>, and <math>AB=CD=52</math>. For any point <math>X</math> in space, suppose <math>f(X)=AX+BX+CX+DX</math>. The least possible value of <math>f(X)</math> can be expressed as <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | ||
− | + | ||
− | == | + | ==Official Solution (MAA)=== |
Let <math>M</math> and <math>N</math> be midpoints of <math>\overline{AB}</math> and <math>\overline{CD}</math>. The given conditions imply that <math>\triangle ABD\cong\triangle BAC</math> and <math>\triangle CDA\cong\triangle DCB</math>, and therefore <math>MC=MD</math> and <math>NA=NB</math>. It follows that <math>M</math> and <math>N</math> both lie on the common perpendicular bisector of <math>\overline{AB}</math> and <math>\overline{CD}</math>, and thus line <math>MN</math> is that common perpendicular bisector. Points <math>B</math> and <math>C</math> are symmetric to <math>A</math> and <math>D</math> with respect to line <math>MN</math>. If <math>X</math> is a point in space and <math>X'</math> is the point symmetric to <math>X</math> with respect to line <math>MN</math>, then <math>BX=AX'</math> and <math>CX=DX'</math>, so <math>f(X) = AX+AX'+DX+DX'</math>. | Let <math>M</math> and <math>N</math> be midpoints of <math>\overline{AB}</math> and <math>\overline{CD}</math>. The given conditions imply that <math>\triangle ABD\cong\triangle BAC</math> and <math>\triangle CDA\cong\triangle DCB</math>, and therefore <math>MC=MD</math> and <math>NA=NB</math>. It follows that <math>M</math> and <math>N</math> both lie on the common perpendicular bisector of <math>\overline{AB}</math> and <math>\overline{CD}</math>, and thus line <math>MN</math> is that common perpendicular bisector. Points <math>B</math> and <math>C</math> are symmetric to <math>A</math> and <math>D</math> with respect to line <math>MN</math>. If <math>X</math> is a point in space and <math>X'</math> is the point symmetric to <math>X</math> with respect to line <math>MN</math>, then <math>BX=AX'</math> and <math>CX=DX'</math>, so <math>f(X) = AX+AX'+DX+DX'</math>. | ||
Line 12: | Line 12: | ||
Because <math>\angle AMN</math> and <math>\angle D'NM</math> are right angles, <cmath>(AD')^2 = (AM+D'N)^2 + MN^2 = (2AM)^2 + MN^2 = 52^2 + 8 = 4\cdot 678.</cmath>It follows that <math>\min f(Q) = 2AD' = 4\sqrt{678}</math>. The requested sum is <math>4+678=\boxed{682}</math>. | Because <math>\angle AMN</math> and <math>\angle D'NM</math> are right angles, <cmath>(AD')^2 = (AM+D'N)^2 + MN^2 = (2AM)^2 + MN^2 = 52^2 + 8 = 4\cdot 678.</cmath>It follows that <math>\min f(Q) = 2AD' = 4\sqrt{678}</math>. The requested sum is <math>4+678=\boxed{682}</math>. | ||
− | + | ==Solution 2== | |
Set <math>a=BC=28</math>, <math>b=CA=44</math>, <math>c=AB=52</math>. Let <math>O</math> be the point which minimizes <math>f(X)</math>. | Set <math>a=BC=28</math>, <math>b=CA=44</math>, <math>c=AB=52</math>. Let <math>O</math> be the point which minimizes <math>f(X)</math>. | ||
Line 36: | Line 36: | ||
Now we use the fact that an isosceles tetrahedron has circumradius <math>R = \sqrt{\frac18(a^2+b^2+c^2)}</math>. Here <math>R = \sqrt{678}</math> so <math>f(O) = 4R = 4\sqrt{678}</math>. Therefore, the answer is <math>4 + 678 = \boxed{682}</math>. | Now we use the fact that an isosceles tetrahedron has circumradius <math>R = \sqrt{\frac18(a^2+b^2+c^2)}</math>. Here <math>R = \sqrt{678}</math> so <math>f(O) = 4R = 4\sqrt{678}</math>. Therefore, the answer is <math>4 + 678 = \boxed{682}</math>. | ||
− | + | ==Solution 3== | |
Isosceles tetrahedron is inscribed in a rectangular box, whose facial diagonals are the edges of the tetrahedron. Minimum <math>f(X)</math> occurs at the center of gravity, and <math>F(x)= 2d</math>, where <math>d</math> is the length of the spatial diagonal of the rectangular box. | Isosceles tetrahedron is inscribed in a rectangular box, whose facial diagonals are the edges of the tetrahedron. Minimum <math>f(X)</math> occurs at the center of gravity, and <math>F(x)= 2d</math>, where <math>d</math> is the length of the spatial diagonal of the rectangular box. | ||
Revision as of 09:36, 4 February 2022
Problem
Tetrahedron has
,
, and
. For any point
in space, suppose
. The least possible value of
can be expressed as
, where
and
are positive integers, and
is not divisible by the square of any prime. Find
.
Official Solution (MAA)=
Let and
be midpoints of
and
. The given conditions imply that
and
, and therefore
and
. It follows that
and
both lie on the common perpendicular bisector of
and
, and thus line
is that common perpendicular bisector. Points
and
are symmetric to
and
with respect to line
. If
is a point in space and
is the point symmetric to
with respect to line
, then
and
, so
.
Let be the intersection of
and
. Then
, from which it follows that
. It remains to minimize
as
moves along
.
Allow to rotate about
to point
in the plane
on the side of
opposite
. Because
is a right angle,
. It then follows that
, and equality occurs when
is the intersection of
and
. Thus
. Because
is the median of
, the Length of Median Formula shows that
and
. By the Pythagorean Theorem
.
Because and
are right angles,
It follows that
. The requested sum is
.
Solution 2
Set ,
,
. Let
be the point which minimizes
.
is the gravity center
.
Let and
denote the midpoints of
and
. From
and
, we have
,
an hence
is a perpendicular bisector of both segments
and
. Then if
is any point inside tetrahedron
, its orthogonal projection onto line
will have smaller
-value; hence we conclude that
must lie on
. Similarly,
must lie on the line joining the midpoints of
and
.
The gravity center coincides with the circumcenter.
Let be the centroid of triangle
; then
(by vectors). If we define
,
,
similarly, we get
and so on. But from symmetry we have
, hence
.
Now we use the fact that an isosceles tetrahedron has circumradius . Here
so
. Therefore, the answer is
.
Solution 3
Isosceles tetrahedron is inscribed in a rectangular box, whose facial diagonals are the edges of the tetrahedron. Minimum occurs at the center of gravity, and
, where
is the length of the spatial diagonal of the rectangular box.
Let the three dimensions of the box be .
Add three equations, .
Hence
.
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.