Difference between revisions of "2003 AMC 12A Problems/Problem 1"
(I added a faster solution as solution 5) |
m (→See also) |
||
Line 48: | Line 48: | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | https://www.youtube.com/watch?v=6ZRnm_DGFfY | ||
+ | Video solution by canada math |
Revision as of 23:06, 27 November 2020
- The following problem is from both the 2003 AMC 12A #1 and 2003 AMC 10A #1, so both problems redirect to this page.
Contents
Problem
What is the difference between the sum of the first even counting numbers and the sum of the first odd counting numbers?
Solution
Solution 1
The first even counting numbers are .
The first odd counting numbers are .
Thus, the problem is asking for the value of .
Solution 2
Using the sum of an arithmetic progression formula, we can write this as .
Solution 3
The formula for the sum of the first even numbers, is , (E standing for even).
Sum of first odd numbers, is , (O standing for odd).
Knowing this, plug for ,
.
Solution 4
In the case that we don't know if is considered an even number, we note that it doesn't matter! The sum of odd numbers is . And the sum of even numbers is either or . When compared to the sum of odd numbers, we see that each of the th term in the series of even numbers differ by . For example, take series and . The first terms are and . Their difference is . Similarly, take take series and . The first terms are and . Their difference is . Since there are terms in each set, the answer .
Solution by franzliszt
Solution 5 (Fastest method)
We can see that the difference of the first even number and the first odd number is one, the difference between the second even number and the second odd number is one and so on. Then, we get which is .
Solution by Penguin Spellcaster
See also
2003 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2003 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Question |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
https://www.youtube.com/watch?v=6ZRnm_DGFfY Video solution by canada math