Difference between revisions of "The Devil's Triangle"

(Proof)
(Proofs)
Line 5: Line 5:
 
==Proof 1==
 
==Proof 1==
 
Proof by CoolJupiter:
 
Proof by CoolJupiter:
 +
 
We have the following ratios:
 
We have the following ratios:
 
<math>\frac{BD}{BC}=\frac{r}{r+1}, \frac{CD}{BC}=\frac{1}{r+1},\frac{CE}{AC}=\frac{s}{s+1}, \frac{AE}{AC}=\frac{1}{s+1},\frac{AF}{AB}=\frac{t}{t+1}, \frac{BF}{AB}=\frac{1}{t+1}</math>.
 
<math>\frac{BD}{BC}=\frac{r}{r+1}, \frac{CD}{BC}=\frac{1}{r+1},\frac{CE}{AC}=\frac{s}{s+1}, \frac{AE}{AC}=\frac{1}{s+1},\frac{AF}{AB}=\frac{t}{t+1}, \frac{BF}{AB}=\frac{1}{t+1}</math>.
Line 26: Line 27:
 
==Proof 2==
 
==Proof 2==
 
Proof by RedFireTruck:
 
Proof by RedFireTruck:
WLOG
+
 
 +
WLOG let <math>A=(0, 0), </math>B=(1, 0)<math>, </math>C=(x, y)<math> for </math>x<math>, </math>y\in\mathbb{R}$
  
 
=Other Remarks=
 
=Other Remarks=

Revision as of 09:53, 6 November 2020

Definition

For any triangle $\triangle ABC$, let $D, E$ and $F$ be points on $BC, AC$ and $AB$ respectively. Devil's Triangle Theorem states that if $\frac{BD}{CD}=r, \frac{CE}{AE}=s$ and $\frac{AF}{BF}=t$, then $\frac{[DEF]}{[ABC]}=1-\frac{r(s+1)+s(t+1)+t(r+1)}{(r+1)(s+1)(t+1)}$.

Proofs

Proof 1

Proof by CoolJupiter:

We have the following ratios: $\frac{BD}{BC}=\frac{r}{r+1}, \frac{CD}{BC}=\frac{1}{r+1},\frac{CE}{AC}=\frac{s}{s+1}, \frac{AE}{AC}=\frac{1}{s+1},\frac{AF}{AB}=\frac{t}{t+1}, \frac{BF}{AB}=\frac{1}{t+1}$.

Now notice that $[DEF]=[ABC]-([BDF]+[CDE]+[AEF])$.

We attempt to find the area of each of the smaller triangles.


Notice that $\frac{[BDF]}{[ABC]}=\frac{BF}{AB}\times \frac{BD}{BC}=\frac{r}{(r+1)(t+1)}$ using the ratios derived earlier.


Similarly, $\frac{[CDE]}{[ABC]}=\frac{s}{(r+1)(s+1)}$ and $\frac{[AEF]}{[ABC]}=\frac{t}{(s+1)(t+1)}$.


Thus, $\frac{[BDF]+[CDE]+[AEF]}{[ABC]}=\frac{r}{(r+1)(t+1)}+\frac{s}{(r+1)(s+1)}+\frac{t}{(s+1)(t+1)}=\frac{r(s+1)+s(t+1)+t(r+1)}{(r+1)(s+1)(t+1)}$.

Finally, we have $\frac{[DEF]}{[ABC]}=\boxed{1-\frac{r(s+1)+s(t+1)+t(r+1)}{(r+1)(s+1)(t+1)}}$.

~@CoolJupiter

Proof 2

Proof by RedFireTruck:

WLOG let $A=(0, 0),$B=(1, 0)$,$C=(x, y)$for$x$,$y\in\mathbb{R}$

Other Remarks

This theorem is a generalization of the Wooga Looga Theorem, which @RedFireTruck claims to have "rediscovered". The link to the theorem can be found here: https://artofproblemsolving.com/wiki/index.php/Wooga_Looga_Theorem

Essentially, Wooga Looga is a special case of this, specifically when $r=s=t$.


Testimonials

The Ooga Booga Tribe would be proud of you. Amazing theorem - RedFireTruck