Difference between revisions of "2018 AMC 8 Problems/Problem 24"
m (→Note) |
Coltsfan10 (talk | contribs) (Tag: Undo) |
||
Line 32: | Line 32: | ||
<math>\textbf{(A) } \frac{5}{4} \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{25}{16} \qquad \textbf{(E) } \frac{9}{4}</math> | <math>\textbf{(A) } \frac{5}{4} \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{25}{16} \qquad \textbf{(E) } \frac{9}{4}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | Note that <math>EJCI</math> is a rhombus by symmetry. | ||
+ | Let the side length of the cube be <math>s</math>. By the Pythagorean theorem, <math>EC= s\sqrt 3</math> and <math>JI= s\sqrt 2</math>. Since the area of a rhombus is half the product of its diagonals, the area of the cross section is <math>\frac{s^2\sqrt 6}{2}</math>. This gives <math>R = \frac{\sqrt 6}2</math>. Thus <math>R^2 = \boxed{\textbf{(C) } \frac{3}{2}}</math> | ||
==Note== | ==Note== |
Revision as of 15:08, 31 October 2020
Problem 24
In the cube with opposite vertices and and are the midpoints of segments and respectively. Let be the ratio of the area of the cross-section to the area of one of the faces of the cube. What is
Solution
Note that is a rhombus by symmetry. Let the side length of the cube be . By the Pythagorean theorem, and . Since the area of a rhombus is half the product of its diagonals, the area of the cross section is . This gives . Thus
Note
In the 2008 AMC 10A,[[2008 AMC 10A Problems/Problem 21 Question 23] was nearly identical to this question, except that in this question you have to look for the square of the area, not the actual area.
Video Solution
https://www.youtube.com/watch?v=04pV_rZw8bg - Happytwin
Video Solution
https://www.youtube.com/watch?v=ji9_6XNxyIc ~ MathEx
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.